Membrane Transport of Small
Violecules and the Electrical
Properties of Membranes

Because of its hydrophobic interior, the lipid bilayer of cell membranes restricts
the passage of most polar molecules. This barrier function allows the cell to main-
tain concentrations of solutes in its cytosol that differ from those in the extracel-
lular fluid and in each of the intracellular membrane-enclosed compartments.
To benefit from this barrier, however, cells have had to evolve ways of transferring
specific water-soluble molecules and ions across their membranes in order to
ingest essential nutrients, excrete metabolic waste products, and regulate intra-
cellular ion concentrations. Cells use specialized membrane transport proteins to
accomplish this goal. The importance of such small molecule transport is reflected
in the large number of genes in all organisms that code for the transmembrane
transport proteins involved, which make up 15-30% of the membrane proteins in
all cells. Some mammalian cells, such as nerve and kidney cells, devote up to two-
thirds of their total metabolic energy consumption to such transport processes.

Cells can also transfer macromolecules and even large particles across their
membranes, but the mechanisms involved in most of these cases differ from
those used for transferring small molecules, and they are discussed in Chapters
12 and 13.

We begin this chapter by describing some general principles of how small
water-soluble molecules traverse cell membranes. We then consider, in turn, the
two main classes of membrane proteins that mediate this transmembrane traffic:
transporters, which undergo sequential conformational changes to transport spe-
cific small molecules across membranes, and channels, which form narrow pores,
allowing passive transmembrane movement, primarily of water and small inor-
ganic ions. Transporters can be coupled to a source of energy to catalyze active
transport, which together with selective passive permeability, creates large dif-
ferences in the composition of the cytosol compared with that of either the extra-
cellular fluid (Table 11-1) or the fluid within membrane-enclosed organelles. By
generating inorganic ion-concentration differences across the lipid bilayer, cell
membranes can store potential energy in the form of electrochemical gradients,
which drive various transport processes, convey electrical signals in electrically
excitable cells, and (in mitochondria, chloroplasts, and bacteria) make most of
the cell’'s ATP. We focus our discussion mainly on transport across the plasma
membrane, but similar mechanisms operate across the other membranes of the
eukaryotic cell, as discussed in later chapters.

In the last part of the chapter, we concentrate mainly on the functions of ion
channels in neurons (nerve cells). In these cells, channel proteins perform at their
highest level of sophistication, enabling networks of neurons to carry out all the
astonishing feats your brain is capable of.

PRINCIPLES OF MEMBRANE TRANSPORT

We begin this section by describing the permeability properties of protein-free,
synthetic lipid bilayers. We then introduce some of the terms used to describe the
various forms of membrane transport and some strategies for characterizing the
proteins and processes involved.
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A Comparison of Inorganic lon Concentrations Inside and Outside
a Typical Mammalian Cell*

Component Cytoplasmic concentration Extracellular concentration
(mM) (mM)

Cations

Na* 5-15 145

K* 140 5

Mg2* 0.5 1-2

Ca?* 10~ 1-2

H* 7x10° (1072 Mor pH 7.2) 4 x 105 (1074 M or pH 7.4)

Anions

Ccr 5-15 110

*The cell must contain equal quantities of positive and negative charges (that is, it must be
electrically neutral). Thus, in addition to CI-, the cell contains many other anions not listed in
this table; in fact, most cell constituents are negatively charged (HCO3~, PO4%-, nucleic acids,
metabolites carrying phosphate and carboxyl groups, etc.). The concentrations of

Ca?* and Mg?* given are for the free ions: although there is a total of about 20 mM Mg2* and
1-2 mM Ca?* in cells, both ions are mostly bound to other substances (such as proteins, free
nucleotides, RNA, etc.) and, for Ca2*, stored within various organelles.

Protein-Free Lipid Bilayers Are Impermeable to lons

Given enough time, virtually any molecule will diffuse across a protein-free lipid
bilayer down its concentration gradient. The rate of diffusion, however, varies
enormously, depending partly on the size of the molecule but mostly on its rela-
tive hydrophobicity (solubility in oil). In general, the smaller the molecule and the
more hydrophobic, or nonpolar, it is, the more easily it will diffuse across a lipid
bilayer. Small nonpolar molecules, such as O, and CO», readily dissolve in lipid
bilayers and therefore diffuse rapidly across them. Small uncharged polar mole-
cules, such as water or urea, also diffuse across a bilayer, albeit much more slowly
(Figure 11-1 and see Movie 10.3). By contrast, lipid bilayers are essentially imper-
meable to charged molecules (ions), no matter how small: the charge and high
degree of hydration of such molecules prevents them from entering the hydrocar-
bon phase of the bilayer (Figure 11-2).

There Are Two Main Classes of Membrane Transport Proteins:
Transporters and Channels

Like synthetic lipid bilayers, cell membranes allow small nonpolar molecules to
permeate by diffusion. Cell membranes, however, also have to allow the passage
of various polar molecules, such as ions, sugars, amino acids, nucleotides, water,
and many cell metabolites that cross synthetic lipid bilayers only very slowly. Spe-
cial membrane transport proteins transfer such solutes across cell membranes.
These proteins occur in many forms and in all types of biological membranes. Each
protein often transports only a specific molecular species or sometimes a class of
molecules (such as ions, sugars, or amino acids). Studies in the 1950s found that
bacteria with a single-gene mutation were unable to transport sugars across their
plasma membrane, thereby demonstrating the specificity of membrane transport
proteins. We now know that humans with similar mutations suffer from various
inherited diseases that hinder the transport of a specific solute or solute class in
the kidney, intestine, or other cell type. Individuals with the inherited disease cys-
tinuria, for example, cannot transport certain amino acids (including cystine, the
disulfide-linked dimer of cysteine) from either the urine or the intestine into the
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Figure 11-1 The relative permeability
of a synthetic lipid bilayer to different
classes of molecules. The smaller the
molecule and, more importantly, the less
strongly it associates with water, the more
rapidly the molecule diffuses across the
bilayer.
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Figure 11-2 Permeability coefficients for the passage of various
molecules through synthetic lipid bilayers. The rate of flow of a solute
across the bilayer is directly proportional to the difference in its concentration
on the two sides of the membrane. Multiplying this concentration difference (in
mol/cm3) by the permeability coefficient (in cm/sec) gives the flow of solute in
moles per second per square centimeter of bilayer. A concentration difference
of tryptophan of 10~ mol/cm3 (1074 mol / 1073 L = 0.1 M), for example, would
cause a flow of 10™* mol/cm® x 10~/ cm/sec = 101" mol/sec through 1 cm?
of bilayer, or 6 x 10* molecules/sec through 1 um? of bilayer.

blood; the resulting accumulation of cystine in the urine leads to the formation of
cystine stones in the kidneys.

All membrane transport proteins that have been studied in detail are multi-
pass transmembrane proteins—that is, their polypeptide chains traverse the lipid
bilayer multiple times. By forming a protein-lined pathway across the membrane,
these proteins enable specific hydrophilic solutes to cross the membrane without
coming into direct contact with the hydrophobic interior of the lipid bilayer.

Transporters and channels are the two major classes of membrane transport
proteins (Figure 11-3). Transporters (also called carriers, or permeases) bind the
specific solute to be transported and undergo a series of conformational changes
that alternately expose solute-binding sites on one side of the membrane and
then on the other to transfer the solute across it. Channels, by contrast, interact
with the solute to be transported much more weakly. They form continuous pores
that extend across the lipid bilayer. When open, these pores allow specific solutes
(such as inorganic ions of appropriate size and charge and in some cases small
molecules, including water, glycerol, and ammonia) to pass through them and
thereby cross the membrane. Not surprisingly, transport through channels occurs
atamuch faster rate than transport mediated by transporters. Although water can
slowly diffuse across synthetic lipid bilayers, cells use dedicated channel proteins
(called water channels, or aquaporins) that greatly increase the permeability of
their membranes to water, as we discuss later.

Active Transport Is Mediated by Transporters Coupled to an
Energy Source

All channels and many transporters allow solutes to cross the membrane only
passively (“downhill”), a process called passive transport. In the case of transport
of a single uncharged molecule, the difference in the concentration on the two
sides of the membrane—its concentration gradient—drives passive transport and
determines its direction (Figure 11-4A). If the solute carries a net charge, how-
ever, both its concentration gradient and the electrical potential difference across
the membrane, the membrane potential, influence its transport. The concentra-
tion gradient and the electrical gradient combine to form a net driving force, the
electrochemical gradient, for each charged solute (Figure 11-4B). We discuss
electrochemical gradients in more detail later and in Chapter 14. In fact, almost all
plasma membranes have an electrical potential (i.e., a voltage) across them, with
the inside usually negative with respect to the outside. This potential favors the
entry of positively charged ions into the cell but opposes the entry of negatively
charged ions (see Figure 11-4B); it also opposes the efflux of positively charged
ions.

solute
lipid —
bilayer o oy
solute-binding site
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Figure 11-3 Transporters and channel
proteins. (A) A transporter alternates
between two conformations, so that

the solute-binding site is sequentially
accessible on one side of the bilayer

and then on the other. (B) In contrast, a
channel protein forms a pore across the
bilayer through which specific solutes can
passively diffuse.
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As shown in Figure 11-4A, in addition to passive transport, cells need to be
able to actively pump certain solutes across the membrane “uphill,” against their
electrochemical gradients. Such active transport is mediated by transporters
whose pumping activity is directional because it is tightly coupled to a source of
metabolic energy, such as an ion gradient or ATP hydrolysis, as discussed later.
Transmembrane movement of small molecules mediated by transporters can be
either active or passive, whereas that mediated by channels is always passive (see
Figure 11-4A).

Summary

Lipid bilayers are virtually impermeable to most polar molecules. To transport
small water-soluble molecules into or out of cells or intracellular membrane-en-
closed compartments, cell membranes contain various membrane transport pro-
teins, each of which is responsible for transferring a particular solute or class of
solutes across the membrane. There are two classes of membrane transport pro-
teins—transporters and channels. Both form protein pathways across the lipid
bilayer. Whereas transmembrane movement mediated by transporters can be
either active or passive, solute flow through channel proteins is always passive. Both
active and passive ion transport is influenced by the ion’s concentration gradient
and the membrane potential—that is, its electrochemical gradient.

TRANSPORTERS AND ACTIVE MEMBRANE
TRANSPORT

The process by which a transporter transfers a solute molecule across the lipid
bilayer resembles an enzyme-substrate reaction, and in many ways transporters
behave like enzymes. By contrast to ordinary enzyme-substrate reactions, how-
ever, the transporter does not modify the transported solute but instead delivers it
unchanged to the other side of the membrane.

Each type of transporter has one or more specific binding sites for its solute
(substrate). It transfers the solute across the lipid bilayer by undergoing reversible
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Figure 11-4 Different forms of
membrane transport and the influence
of the membrane. Passive transport

down a concentration gradient (or an
electrochemical gradient—see B below)
occurs spontaneously, by diffusion, either
through the lipid bilayer directly or through
channels or passive transporters. By
contrast, active transport requires an input
of metabolic energy and is always mediated
by transporters that pump the solute
against its concentration or electrochemical
gradient. (B) The electrochemical gradient
of a charged solute (an ion) affects its
transport. This gradient combines the
membrane potential and the concentration
gradient of the solute. The electrical and
chemical gradients can work additively to
increase the driving force on an ion across
the membrane (middle) or can work against
each other (right).
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conformational changes that alternately expose the solute-binding site first on
one side of the membrane and then on the other—but never on both sides at the
same time. The transition occurs through an intermediate state in which the sol-
ute is inaccessible, or occluded, from either side of the membrane (Figure 11-5).
When the transporter is saturated (that is, when all solute-binding sites are occu-
pied), the rate of transport is maximal. This rate, referred to as Viyax (V for veloc-
ity), is characteristic of the specific carrier. Vinox measures the rate at which the
carrier can flip between its conformational states. In addition, each transporter
has a characteristic affinity for its solute, reflected in the Ky, of the reaction, which
is equal to the concentration of solute when the transport rate is half its maximum
value (Figure 11-6). As with enzymes, the binding of solute can be blocked by
either competitive inhibitors (which compete for the same binding site and may
or may not be transported) or noncompetitive inhibitors (which bind elsewhere
and alter the structure of the transporter).

As we discuss shortly, it requires only a relatively minor modification of the
model shown in Figure 11-5 to link a transporter to a source of energy in order
to pump a solute uphill against its electrochemical gradient. Cells carry out such
active transport in three main ways (Figure 11-7):

1. Coupled transporters harness the energy stored in concentration gradients
to couple the uphill transport of one solute across the membrane to the
downbhill transport of another.

2. ATP-driven pumps couple uphill transport to the hydrolysis of ATP.

Light- or redox-driven pumps, which are known in bacteria, archaea, mito-
chondria, and chloroplasts, couple uphill transport to an input of energy
from light, as with bacteriorhodopsin (discussed in Chapter 10), or from a
redox reaction, as with cytochrome c oxidase (discussed in Chapter 14).

Amino acid sequence and three-dimensional structure comparisons suggest
that, in many cases, there are strong similarities in structure between transport-
ers that mediate active transport and those that mediate passive transport. Some
bacterial transporters, for example, that use the energy stored in the H* gradi-
ent across the plasma membrane to drive the active uptake of various sugars are
structurally similar to the transporters that mediate passive glucose transport
into most animal cells. This suggests an evolutionary relationship between vari-
ous transporters. Given the importance of small metabolites and sugars as energy
sources, it is not surprising that the superfamily of transporters is an ancient one.

We begin our discussion of active membrane transport by considering a class
of coupled transporters that are driven by ion concentration gradients. These pro-
teins have a crucial role in the transport of small metabolites across membranes
in all cells. We then discuss ATP-driven pumps, including the Na*-K* pump that is
found in the plasma membrane of most animal cells. Examples of the third class
of active transport—light- or redox-driven pumps—are discussed in Chapter 14.

Active Transport Can Be Driven by lon-Concentration Gradients

Some transporters simply passively mediate the movement of a single solute from
one side of the membrane to the other at a rate determined by their Vi, and

rate of transport
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Figure 11-5 A model of how a
conformational change in a transporter
mediates the passive movement of a
solute. The transporter is shown in three
conformational states: in the outward-
open state, the binding sites for solute are
exposed on the outside; in the occluded
state, the same sites are not accessible
from either side; and in the inward-open
state, the sites are exposed on the inside.
The transitions between the states occur
randomly. They are completely reversible
and do not depend on whether the solute-
binding site is occupied. Therefore, if

the solute concentration is higher on the
outside of the bilayer, more solute binds
to the transporter in the outward-open
conformation than in the inward-open
conformation, and there is a net transport
of solute down its concentration gradient
(or, if the solute is an ion, down its
electrochemical gradient).

Vimax

transporter-mediated
diffusion

1/2Vimax

simple diffusion

and channel-mediated
transport

Km concentration of —=
transported molecule

Figure 11-6 The kinetics of simple
diffusion compared with transporter-
mediated diffusion. Whereas the rate

of diffusion and channel-mediated
transport is directly proportional to the
solute concentration (within the physical
limits imposed by total surface area

or total channels available), the rate of
transporter-mediated diffusion reaches a
maximum (Vimax) when the transporter is
saturated. The solute concentration when
the transport rate is at half its maximal
value approximates the binding constant
(Km) of the transporter for the solute and
is analogous to the K, of an enzyme

for its substrate. The graph applies to a
transporter moving a single solute; the
kinetics of coupled transport of two or
more solutes is more complex and exhibits
cooperative behavior.
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Ky they are called uniporters. Others function as coupled transporters, in which
the transfer of one solute strictly depends on the transport of a second. Coupled
transport involves either the simultaneous transfer of a second solute in the same
direction, performed by symporters (also called co-transporters), or the transfer
of a second solute in the opposite direction, performed by antiporters (also called
exchangers) (Figure 11-8).

The tight coupling between the transfer of two solutes allows the coupled
transporters to harvest the energy stored in the electrochemical gradient of one
solute, typically an inorganic ion, to transport the other. In this way, the free
energy released during the movement of an inorganic ion down an electrochem-
ical gradient is used as the driving force to pump other solutes uphill, against
their electrochemical gradient. This strategy can work in either direction; some
coupled transporters function as symporters, others as antiporters. In the plasma
membrane of animal cells, Na* is the usual co-transported ion because its elec-
trochemical gradient provides a large driving force for the active transport of a
second molecule. The Na* that enters the cell during coupled transport is sub-
sequently pumped out by an ATP-driven Na*-K* pump in the plasma membrane
(as we discuss later), which, by maintaining the Na* gradient, indirectly drives
the coupled transport. Such ion-driven coupled transporters as just described
are said to mediate secondary active transport. In contrast, ATP-driven pumps are
said to mediate primary active transport because in these the free energy of ATP
hydrolysis is used to directly drive the transport of a solute against its concentra-
tion gradient.

Intestinal and kidney epithelial cells contain a variety of symporters that are
driven by the Na* gradient across the plasma membrane. Each Na*-driven sym-
porter is specific for importing a small group of related sugars or amino acids
into the cell. Because the Na* tends to move into the cell down its electrochem-
ical gradient, the sugar or amino acid is, in a sense, “dragged” into the cell with
it. The greater the electrochemical gradient for Na*, the more solute is pumped

transported molecule co-transported ion
[ J
lipid
bilayer
1 .
UNIPORT SYMPORT ANTIPORT

| |
coupled transport

Figure 11-7 Three ways of driving

active transport. The actively transported
molecule is shown in orange, and the
energy source is shown in red. Redox
driven active transport is discussed in
Chapter 14 (see Figures 14-18 and 14-19).

Figure 11-8 This schematic diagram
shows transporters functioning as
uniporters, symporters, and antiporters
(Movie 11.1).
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Figure 11-9 Mechanism of glucose transport fueled by a Na* gradient. As in the model shown in Figure 11-5,

the transporter alternates between inward-open and outward-open states via an occluded intermediate state. Binding of

Na* and glucose is cooperative—that is, the binding of either solute increases the protein’s affinity for the other. Since the

Nat* concentration is much higher in the extracellular space than in the cytosol, glucose is more likely to bind to the transporter
in the outward-facing state. The transition to the occluded state occurs only when both Na* and glucose are bound; their
precise interactions in the solute-binding sites slightly stabilize the occluded state and thereby make this transition energetically
favorable. Stochastic fluctuations caused by thermal energy drive the transporter randomly into the inward-open or outward-
open conformation. If it opens outwardly, nothing is achieved, and the process starts all over. However, whenever it opens
inwardly, Na* dissociates quickly in the low-Na*-concentration environment of the cytosol. Glucose dissociation is likewise
enhanced when Nat is lost, because of cooperativity in binding of the two solutes. The overall result is the net transport of
both Na* and glucose into the cell. Because the occluded state is not formed when only one of the solutes is bound, the
transporter switches conformation only when it is fully occupied or fully empty, thereby assuring strict coupling of the transport

of Na* and glucose.

into the cell (Figure 11-9). Neurotransmitters (released by nerve cells to signal at
synapses—as we discuss later) are taken up again by Na* symporters after their
release. These neurotransmitter transporters are important drug targets: stimu-
lants, such as cocaine and antidepressants, inhibit them and thereby prolong sig-
naling by the neurotransmitters, which are not cleared efficiently.

Despite their great variety, transporters share structural features that can
explain how they function and how they evolved. Transporters are typically
built from bundles of 10 or more a helices that span the membrane. Solute- and
ion-binding sites are located midway through the membrane, where some helices
are broken or distorted and amino acid side chains and polypeptide backbone
atoms form ion- and solute-binding sites. In the inward-open and outward-open
conformations, these binding sites are accessible by passageways from one side of
the membrane but not the other. In switching between the two conformations, the
transporter protein transiently adopts an occluded conformation, in which both
passageways are closed; this prevents the driving ion and the transported solute
from crossing the membrane unaccompanied, which would deplete the cell’s
energy store to no purpose. Because only transporters with both types of binding
sites appropriately filled change their conformation, tight coupling between ion
and solute transport is assured.

Like enzymes, transporters can work in the reverse direction if ion and solute
gradients are appropriately adjusted experimentally. This chemical symmetry is
mirrored in their physical structure. Crystallographic analyses have revealed that
transporters are built from inverted repeats: the packing of the transmembrane o
helices in one half of the helix bundle is structurally similar to the packing in the
other half, but the two halves are inverted in the membrane relative to each other.
Transporters are therefore said to be pseudosymmetric, and the passageways
that open and close on either side of the membrane have closely similar geome-
tries, allowing alternating access to the ion- and solute-binding sites in the center
(Figure 11-10). It is thought that the two halves evolved by gene duplication of a
smaller ancestor protein.
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Some other types ofimportant membrane transport proteins are also built from
inverted repeats. Examples even include channel proteins such as the aquaporin
water channel (discussed later) and the Sec61 channel through which nascent
polypeptides move into the endoplasmic reticulum (discussed in Chapter 12). It
is thought that these channels evolved from coupled transporters, in which the
gating functions were lost, allowing them to open toward both sides of the mem-
brane simultaneously to provide a continuous path across the membrane.

In bacteria, yeasts, and plants, as well as in many membrane-enclosed organ-
elles of animal cells, most ion-driven active transport systems depend on H*
rather than Na* gradients, reflecting the predominance of H* pumps in these
membranes. An electrochemical H* gradient across the bacterial plasma mem-
brane, for example, drives the inward active transport of many sugars and amino
acids.

Transporters in the Plasma Membrane Regulate Cytosolic pH

Most proteins operate optimally at a particular pH. Lysosomal enzymes, for
example, function best at the low pH (~5) found in lysosomes, whereas cytosolic
enzymes function best at the close-to-neutral pH (~7.2) found in the cytosol. It
is therefore crucial that cells control the pH of their intracellular compartments.

Most cells have one or more types of Na*-driven antiporters in their plasma
membrane that help to maintain the cytosolic pH at about 7.2. These transporters
use the energy stored in the Na* gradient to pump out excess H*, which either
leaks in or is produced in the cell by acid-forming reactions. Two mechanisms are
used: either H* is directly transported out of the cell or HCO3™ is brought into the
cell to neutralize H* in the cytosol (according to the reaction HCO3™ + H* — H,0 +
COy). One of the antiporters that uses the first mechanism is a Na*-H"* exchanger,
which couples an influx of Na* to an efflux of H*. Another, which uses a combi-
nation of the two mechanisms, is a Na*-driven CI"-HCO3~ exchanger that couples
an influx of Na* and HCO3~ to an efflux of Cl- and H* (so that NaHCO3 comes
in and HCI goes out). The Na*-driven CI™~-HCO3~ exchanger is twice as effective
as the Na*-H* exchanger: it pumps out one H* and neutralizes another for each
Na* that enters the cell. If HCOs3™ is available, as is usually the case, this antiporter
is the most important transporter regulating the cytosolic pH. The pH inside the
cell regulates both exchangers; when the pH in the cytosol falls, both exchangers
increase their activity.

A Na*-independent CI"-HCOs~ exchanger adjusts the cytosolic pH in the
reverse direction. Like the Na*-dependent transporters, pH regulates the Na*-in-
dependent CI™~-HCO3"~ exchanger, but the exchanger’s activity increases as the
cytosol becomes too alkaline. The movement of HCO3™ in this case is normally
out of the cell, down its electrochemical gradient, which decreases the pH of the

Figure 11-10 Transporters are built from
inverted repeats. (A) LeuT, a bacterial
leucine/Na* symporter related to human
neurotransmitter transporters, such as the
serotonin transporter, is shown. The core
of the transporter is built from two bundles,
each composed of five a helices (blue

and yellow). The helices shown in gray
differ among members of this transporter
family and are thought to play regulatory
roles, which are specific to a particular
transporter. (B) Both core helix bundles are
packed in a similar arrangement (shown
as a hand, with the broken helix as the
thumb), but the second bundle is inverted
with respect to the first. The transporter’s
structural pseudosymmetry reflects its
functional symmetry: the transporter can
work in either direction, depending on the
direction of the ion gradient. (Adapted from
K.R. Vinothkumar and R. Henderson,

Q. Rev. Biophys. 43:65-158, 2010. With
permission from Cambridge University
Press. PDB code: 3F3E.)
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cytosol. A Na*-independent CI"-HCO3~ exchanger in the membrane of red blood
cells (called band 3 protein—see Figure 10-38) facilitates the quick discharge of
CO,, (as HCO3") as the cells pass through capillaries in the lung.

The intracellular pH is not entirely regulated by transporters in the plasma
membrane: ATP-driven H* pumps are used to control the pH of many intracellu-
lar compartments. As discussed in Chapter 13, H* pumps maintain the low pH in
lysosomes, as well as in endosomes and secretory vesicles. These H" pumps use
the energy of ATP hydrolysis to pump H* into these organelles from the cytosol.

An Asymmetric Distribution of Transporters in Epithelial Cells
Underlies the Transcellular Transport of Solutes

In epithelial cells, such as those that absorb nutrients from the gut, transporters
are distributed nonuniformly in the plasma membrane and thereby contribute
to the transcellular transport of absorbed solutes. By the actions of the trans-
porters in these cells, solutes are moved across the epithelial cell layer into the
extracellular fluid from where they pass into the blood. As shown in Figure 11-11,
Na*-linked symporters located in the apical (absorptive) domain of the plasma
membrane actively transport nutrients into the cell, building up substantial con-
centration gradients for these solutes across the plasma membrane. Uniporters
in the basal and lateral (basolateral) domains allow the nutrients to leave the cell
passively down these concentration gradients.

In many of these epithelial cells, the plasma membrane area is greatly increased
by the formation of thousands of microvilli, which extend as thin, fingerlike pro-
jections from the apical surface of each cell. Such microvilli can increase the total
absorptive area of a cell as much as 25-fold, thereby enhancing its transport capa-
bilities.

As we have seen, ion gradients have a crucial role in driving many essential
transport processes in cells. lon pumps that use the energy of ATP hydrolysis
establish and maintain these gradients, as we discuss next.
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Figure 11-11 Transcellular transport. The
transcellular transport of glucose across
an intestinal epithelial cell depends on the
nonuniform distribution of transporters in
the cell’s plasma membrane. The process
shown here results in the transport of
glucose from the intestinal lumen to the
extracellular fluid (from where it passes
into the blood). Glucose is pumped into
the cell through the apical domain of the
membrane by a Na*-powered glucose
symporter. Glucose passes out of the

cell (down its concentration gradient) by
passive movement through a glucose
uniporter in the basal and lateral membrane
domains. The Na* gradient driving the
glucose symport is maintained by the
Na*-K* pump in the basal and lateral
plasma membrane domains, which keeps
the internal concentration of Na* low
(Movie 11.2). Adjacent cells are connected
by impermeable tight junctions, which
have a dual function in the transport
process illustrated: they prevent solutes
from crossing the epithelium between
cells, allowing a concentration gradient

of glucose to be maintained across the
cell sheet (see Figure 19-18). They also
serve as diffusion barriers (fences) within
the plasma membrane, which help confine
the various transporters to their respective
membrane domains (see Figure 10-34).
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There Are Three Classes of ATP-Driven Pumps

ATP-driven pumps are often called transport ATPases because they hydrolyze ATP
to ADP and phosphate and use the energy released to pump ions or other solutes
across a membrane. There are three principal classes of ATP-driven pumps (Fig-
ure 11-12), and representatives of each are found in all prokaryotic and eukary-
otic cells.

1. P-type pumps are structurally and functionally related multipass trans-
membrane proteins. They are called “P-type” because they phosphorylate
themselves during the pumping cycle. This class includes many of the ion
pumps that are responsible for setting up and maintaining gradients of
Nat, K*, H*, and Ca2* across cell membranes.

2. ABC transporters (ATP-Binding Cassette transporters) differ structur-
ally from P-type ATPases and primarily pump small molecules across cell
membranes.

3. V-type pumps are turbine-like protein machines, constructed from multi-
ple different subunits. The V-type proton pump transfers H* into organelles
such as lysosomes, synaptic vesicles, and plant or yeast vacuoles (V = vacu-
olar), to acidify the interior of these organelles (see Figure 13-37).

Structurally related to the V-type pumps is a distinct family of F-type ATPases,

more commonly called ATP synthases because they normally work in reverse:
instead of using ATP hydrolysis to drive H* transport, they use the H* gradient
across the membrane to drive the synthesis of ATP from ADP and phosphate (see
Figure 14-30). ATP synthases are found in the plasma membrane of bacteria, the
inner membrane of mitochondria, and the thylakoid membrane of chloroplasts.
The H* gradient is generated either during the electron-transport steps of oxida-
tive phosphorylation (in aerobic bacteria and mitochondria), during photosyn-
thesis (in chloroplasts), or by the light-driven H* pump (bacteriorhodopsin) in
Halobacterium. We discuss some of these proteins in detail in Chapter 14.

For the remainder of this section, we focus on P-type pumps and ABC trans-

porters.

A P-type ATPase Pumps Ca2* into the Sarcoplasmic Reticulum
in Muscle Cells

Eukaryotic cells maintain very low concentrations of free Ca®* in their cytosol
(~10"7 M) in the face of a very much higher extracellular Ca®>* concentration (~10-3
M). Therefore, even a small influx of Ca?* significantly increases the concentra-
tion of free Ca* in the cytosol, and the flow of Ca?* down its steep concentration
gradient in response to extracellular signals is one means of transmitting these
signals rapidly across the plasma membrane (discussed in Chapter 15). It is thus

Figure 11-12 Three types of ATP-driven
pumps. Like any enzyme, all ATP-driven
pumps can work in either direction,
depending on the electrochemical
gradients of their solutes and the ATP/ADP
ratio. When the ATP/ADP ratio is high, they
hydrolyze ATP; when the ATP/ADP ratio is
low, they can synthesize ATP. The F-type
ATPase in mitochondria normally works in
this “reverse” mode to make most of the
cell's ATP.
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important that the cell maintains a steep Ca®* gradient across its plasma mem-
brane. Ca®* transporters that actively pump Ca?* out of the cell help maintain the
gradient. One of these is a P-type Ca?* ATPase; the other is an antiporter (called
a Na*-Ca?* exchanger) that is driven by the Na* electrochemical gradient (dis-
cussed in Chapter 15).

The Ca?* pump, or Ca?* ATPase, in the sarcoplasmic reticulum (SR) mem-
brane of skeletal muscle cells is a well-understood P-type transport ATPase. The
SR is a specialized type of endoplasmic reticulum that forms a network of tubular
sacs in the muscle cell cytoplasm, and it serves as an intracellular store of Ca?*.
When an action potential depolarizes the muscle cell plasma membrane, Ca®* is
released into the cytosol from the SR through Ca?*-release channels, stimulating
the muscle to contract (discussed in Chapters 15 and 16). The Ca?* pump, which
accounts for about 90% of the membrane protein of the SR, moves Ca?* from the
cytosol back into the SR. The endoplasmic reticulum of nonmuscle cells contains
a similar Ca®* pump, but in smaller quantities.

Enzymatic studies and analyses of the three-dimensional structures of trans-
port intermediates of the SR Ca?>* pump and related pumps have revealed the
molecular mechanism of P-type transport ATPases in great detail. They all have
similar structures, containing 10 transmembrane o helices connected to three
cytosolic domains (Figure 11-13). In the Ca?* pump, amino acid side chains pro-
truding from the transmembrane helices form two centrally positioned binding
sites for Ca®*. As shown in Figure 11-14, in the pump’s ATP-bound nonphosphor-
ylated state, these binding sites are accessible only from the cytosolic side of the
SR membrane. Ca?* binding triggers a series of conformational changes that close
the passageway to the cytosol and activate a phosphotransfer reaction in which
the terminal phosphate of the ATP is transferred to an aspartate that is highly con-
served among all P-type ATPases. The ADP then dissociates and is replaced with
a fresh ATP, causing another conformational change that opens a passageway to
the SR lumen through which the two Ca?* ions exit. They are replaced by two H*
ions and a water molecule that stabilize the empty Ca?*-binding sites and close
the passageway to the SR lumen. Hydrolysis of the labile phosphoryl-aspartate
bond returns the pump to the initial conformation, and the cycle starts again. The
transient self-phosphorylation of the pump during its cycle is an essential charac-
teristic of all P-type pumps.

The Plasma Membrane Na*™-K* Pump Establishes Na™ and K*
Gradients Across the Plasma Membrane

The concentration of K* is typically 10-30 times higher inside cells than outside,
whereas the reverse is true of Na* (see Table 11-1, p. 598). A Na*-K* pump, or Na*-
K* ATPase, found in the plasma membrane of virtually all animal cells maintains
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Figure 11-13 The structure of the
sarcoplasmic reticulum Ca%* pump.

The ribbon model (left), derived from x-ray
crystallographic analyses, shows the pump
in its phosphorylated, ATP-bound state.
The three globular cytosolic domains of
the pump —the nucleotide-binding domain
(dark green), the activator domain (blue),
and the phosphorylation domain (red), also
shown schematically on the right—change
conformation dramatically during the
pumping cycle. These changes in turn alter
the arrangement of the transmembrane
helices, which allows the Ca?* to be
released from its binding cavity into the SR
lumen (Movie 11.3). (PDB code: 3B9B.)
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these concentration differences. Like the Ca?* pump, the Na*-K* pump belongs
to the family of P-type ATPases and operates as an ATP-driven antiporter, actively
pumping Na* out of the cell against its steep electrochemical gradient and pump-
ing K* in (Figure 11-15).

We mentioned earlier that the Na* gradient produced by the Na*-K* pump
drives the transport of most nutrients into animal cells and also has a crucial role
in regulating cytosolic pH. A typical animal cell devotes almost one-third of its
energy to fueling this pump, and the pump consumes even more energy in nerve
cells and in cells that are dedicated to transport processes, such as those forming
kidney tubules.

Since the Na*-K* pump drives three positively charged ions out of the cell for
every two it pumps in, it is electrogenic: it drives a net electric current across the
membrane, tending to create an electrical potential, with the cell’s inside being
negative relative to the outside. This electrogenic effect of the pump, however, sel-
dom directly contributes more than 10% to the membrane potential. The remain-
ing 90%, as we discuss later, depends only indirectly on the Na*-K* pump.
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Figure 11-14 The pumping cycle of the
sarcoplasmic reticulum Ca2+ pump.

lon pumping proceeds by a series of
stepwise conformational changes in

which movements of the pump’s three
cytosolic domains [the nucleotide-binding
domain (N), the phosphorylation domain
(P), and the activator domain (A)] are
mechanically coupled to movements of the
transmembrane a helices. Helix movement
opens and closes passageways through
which Ca?* enters from the cytosol and
binds to the two centrally located Ca?*
binding sites. The two Ca?* then exit

into the SR lumen and are replaced by
two H*, which are transported in the
opposite direction. The Ca?*-dependent
phosphorylation and H*-dependent
dephosphorylation of aspartic acid are
universally conserved steps in the reaction
cycle of all P-type pumps: they cause the
conformational transitions to occur in an
orderly manner, enabling the proteins to do
useful work. (Adapted from C. Toyoshima
et al., Nature 432:361-368, 2004 and

J.V. Maller et al., Q. Rev. Biophys. 43:501-
566, 2010.)

Figure 11-15 The function of the

Na*-K* pump. This P-type ATPase
actively pumps Na* out of and K* into a
cell against their electrochemical gradients.
It is structurally closely related to the

Ca?* ATPase but differs in its selectivity for
ions: for every molecule of ATP hydrolyzed
by the pump, three Na* are pumped out
and two K* are pumped in. As in the

Ca?* pump, an aspartate is phosphorylated
and dephosphorylated during the

pumping cycle (Movie 11.4).
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ABC Transporters Constitute the Largest Family of Membrane
Transport Proteins

The last type of transport ATPase that we discuss is the family of the ABC trans-
porters, so named because each member contains two highly conserved ATPase
domains, or ATP-Binding “Cassettes,” on the cytosolic side of the membrane.
ATP binding brings together the two ATPase domains, and ATP hydrolysis leads
to their dissociation (Figure 11-16). These movements of the cytosolic domains
are transmitted to the transmembrane segments, driving cycles of conformational
changes that alternately expose solute-binding sites on one side of the membrane
and then on the other, as we have seen for other transporters. In this way, ABC
transporters harvest the energy released upon ATP binding and hydrolysis to
drive transport of solutes across the bilayer. The transport is directional toward
inside or toward outside, depending on the particular conformational change in
the solute binding site that is linked to ATP hydrolysis (see Figure 11-16).

ABC transporters constitute the largest family of membrane transport proteins
and are of great clinical importance. The first of these proteins to be characterized
was found in bacteria. We have already mentioned that the plasma membranes
of all bacteria contain transporters that use the H* gradient across the membrane
to actively transport a variety of nutrients into the cell. In addition, bacteria use
ABC transporters to import certain small molecules. In bacteria such as E. coli
that have double membranes (Figure 11-17), the ABC transporters are located in
the inner membrane, and an auxiliary mechanism operates to capture the nutri-
ents and deliver them to the transporters (Figure 11-18).

In E. coli, 78 genes (an amazing 5% of the bacterium’s genes) encode ABC
transporters, and animal genomes encode an even larger number. Although each
transporter is thought to be specific for a particular molecule or class of molecules,
the variety of substrates transported by this superfamily is great and includes inor-
ganic ions, amino acids, mono- and polysaccharides, peptides, lipids, drugs, and,
in some cases, even proteins that can be larger than the transporter itself.

Figure 11-16 Small-molecule transport
(A) A BACTERIAL ABC TRANSPORTER by typical ABC transporters. ABC
small solute molecule transporters consist of multiple domains.
Typically, two hydrophobic domains,
hydrophobic each built of six membrane-spanning a
domains helices, together form the translocation
7 pathway and provide substrate specificity.
® Two ATPase domains protrude into the
cytosol. In some cases, the two halves
CYTOSOL of the transporter are formed by a single

polypeptide, whereas in other cases they
are formed by two or more separate
polypeptides that assemble into a similar
/S structure. Without ATP bound, the
ATPase transporter exposes a substrate-binding

domains SIRD 2 ADP + (P, ° si_te on one side of the memprane. ATP
binding induces a conformational change
that exposes the substrate-binding site
on the opposite side; ATP hydrolysis
(B) A EUKARYOTIC ABC TRANSPORTER followed by ADP dissociation returns the
(] transporter to its original conformation.
Most individual ABC transporters are
unidirectional. (A) Both importing and
exporting ABC transporters are found in
() bacteria; an ABC importer is shown in this
cartoon. The crystal structure of a bacterial
CYTOSOL

ABC transporter is shown in Figure 3-76.
(B) In eukaryotes, most ABC transporters
ATP export substances—either from the cytosol
ase
domains to the extracellular space or from the

solute-binding
site

cytosol to a membrane-bound intracellular
small @ compartment such as the endoplasmic
solute g ATP 2/ADP + (P reticulum—or from the mitochondrial matrix
molecule to the cytosol.
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The first eukaryotic ABC transporters identified were discovered because of
their ability to pump hydrophobic drugs out of the cytosol. One of these transport-
ers is the multidrug resistance (MDR) protein, also called P-glycoprotein. It is
present at elevated levels in many human cancer cells and makes the cells simul-
taneously resistant to a variety of chemically unrelated cytotoxic drugs that are
widely used in cancer chemotherapy. Treatment with any one of these drugs can
result in the selective survival and overgrowth of those cancer cells that express an
especially large amount of the MDR transporter. These cells pump drugs out of the
cell very efficiently and are therefore relatively resistant to the drugs’ toxic effects
(Movie 11.5). Selection for cancer cells with resistance to one drug can thereby
lead to resistance to a wide variety of anticancer drugs. Some studies indicate that
up to 40% of human cancers develop multidrug resistance, making it a major hur-
dle in the battle against cancer.

A related and equally sinister phenomenon occurs in the protist Plasmodium
falciparum, which causes malaria. More than 200 million people are infected
worldwide with this parasite, which remains a major cause of human death,
killing almost a million people every year. The development of resistance to the
antimalarial drug chloroquine has hampered the control of malaria. The resistant
P, falciparum have amplified a gene encoding an ABC transporter that pumps out
the chloroquine.
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Figure 11-17 A small section of

the double membrane of an E. coli
bacterium. The inner membrane is

the cell’s plasma membrane. Between
the inner and outer membranes is a
highly porous, rigid peptidoglycan layer,
composed of protein and polysaccharide
that constitute the bacterial cell wall. It is
attached to lipoprotein molecules in the
outer membrane and fills the periplasmic
space (only a little of the peptidoglycan
layer is shown). This space also contains
a variety of soluble protein molecules. The
dashed threads (shown in green) at the
top represent the polysaccharide chains of
the special lipopolysaccharide molecules
that form the external monolayer of the
outer membrane; for clarity, only a few

of these chains are shown. Bacteria with
double membranes are called Gram-
negative because they do not retain the
dark blue dye used in Gram staining.
Bacteria with single membranes (but
thicker peptidoglycan cell walls), such as
staphylococci and streptococci, retain
the blue dye and are therefore called
Gram-positive; their single membrane is
analogous to the inner (plasma) membrane
of Gram-negative bacteria.

Figure 11-18 The auxiliary transport
system associated with transport
ATPases in bacteria with double
membranes. The solute diffuses through
channel proteins (porins) in the outer
membrane and binds to a periplasmic
substrate-binding protein that delivers it to
the ABC transporter, which pumps it across
the plasma membrane. The peptidoglycan
is omitted for simplicity; its porous structure
allows the substrate-binding proteins and
water-soluble solutes to move through it by
diffusion.
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In most vertebrate cells, an ABC transporter in the endoplasmic reticulum
(ER) membrane (named transporter associated with antigen processing, or TAP
transporter) actively pumps a wide variety of peptides from the cytosol into the
ER lumen. These peptides are produced by protein degradation in proteasomes
(discussed in Chapter 6). They are carried from the ER to the cell surface, where
they are displayed for scrutiny by cytotoxic T lymphocytes, which kill the cell if the
peptides are derived from a virus or other microorganism lurking in the cytosol of
an infected cell (discussed in Chapter 24).

Yet another member of the ABC transporter family is the cystic fibrosis trans-
membrane conductance regulator protein (CFTR), which was discovered through
studies of the common genetic disease cystic fibrosis. This disease is caused by
a mutation in the gene encoding CFTR, a Cl~ transport protein in the plasma
membrane of epithelial cells. CFTR regulates ion concentrations in the extracel-
lular fluid, especially in the lung. One in 27 Caucasians carries a gene encoding
a mutant form of this protein; in 1 in 2900, both copies of the gene are mutated,
causing the disease. In contrast to other ABC transporters, ATP binding and
hydrolysis in the CFTR protein do not drive the transport process. Instead, they
control the opening and closing of a continuous channel, which provides a pas-
sive conduit for Cl~ to move down its electrochemical gradient. Thus, some ABC
proteins can function as transporters and others as gated channels.

Summary

Transporters bind specific solutes and transfer them across the lipid bilayer by
undergoing conformational changes that alternately expose the solute-binding site
on one side of the membrane and then on the other. Some transporters move a sin-
gle solute “downhill,” whereas others can act as pumps to move a solute “uphill”
against its electrochemical gradient, using energy provided by ATP hydrolysis, by a
downbhill flow of another solute (such as Na* or H*), or by light to drive the requisite
series of conformational changes in an orderly manner. Transporters belong to a
small number of protein families. Each family evolved from a common ancestral
protein, and its members all operate by a similar mechanism. The family of P-type
transport ATPases, which includes Ca®* and Na*-K* pumps, is an important exam-
ple; each of these ATPases sequentially phosphorylates and dephosphorylates itself
during the pumping cycle. The superfamily of ABC transporters is the largest family
of membrane transport proteins and is especially important clinically. It includes
proteins that are responsible for cystic fibrosis, for drug resistance in both cancer
cells and malaria-causing parasites, and for pumping pathogen-derived peptides
into the ER for cytotoxic lymphocytes to reorganize on the surface of infected cells.

CHANNELS AND THE ELECTRICAL PROPERTIES
OF MEMBRANES

Unlike transporters, channels form pores across membranes. One class of chan-
nel proteins found in virtually all animals forms gap junctions between adjacent
cells; each plasma membrane contributes equally to the formation of the chan-
nel, which connects the cytoplasm of the two cells. These channels are discussed
in Chapter 19 and will not be considered further here. Both gap junctions and
porins, the channels in the outer membranes of bacteria, mitochondria, and chlo-
roplasts (discussed in Chapter 10), have relatively large and permissive pores, and
it would be disastrous if they directly connected the inside of a cell to an extracel-
lular space. Indeed, many bacterial toxins do exactly that to kill other cells (dis-
cussed in Chapter 24).

In contrast, most channels in the plasma membrane of animal and plant cells
that connect the cytosol to the cell exterior necessarily have narrow, highly selec-
tive pores that can open and close rapidly. Because these proteins are concerned
specifically with inorganic ion transport, they are referred to as ion channels. For
transport efficiency, ion channels have an advantage over transporters, in that
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they can pass up to 100 million ions through one open channel each second—a
rate 10° times greater than the fastest rate of transport mediated by any known
transporter. As discussed earlier, however, channels cannot be coupled to an
energy source to perform active transport, so the transport they mediate is always
passive (downbhill). Thus, the function of ion channels is to allow specific inorganic
ions—primarily Na*, K*, Ca?*, or Cl-—to diffuse rapidly down their electrochem-
ical gradients across the lipid bilayer. In this section, we will see that the ability
to control ion fluxes through these channels is essential for many cell functions.
Nerve cells (neurons), in particular, have made a specialty of using ion channels,
and we will consider how they use many different ion channels to receive, con-
duct, and transmit signals. Before we discuss ion channels, however, we briefly
consider the aquaporin water channels that we mentioned earlier.

Aquaporins Are Permeable to Water But Impermeable to lons

Because cells are mostly water (typically ~70% by weight), water movement across
cell membranes is fundamentally important for life. Cells also contain a high con-
centration of solutes, including numerous negatively charged organic molecules
that are confined inside the cell (the so-called fixed anions) and their accompa-
nying cations that are required for charge balance. This creates an osmotic gra-
dient, which mostly is balanced by an opposite osmotic gradient due to a high
concentration of inorganic ions—chiefly Na* and Cl"—in the extracellular fluid.
The small remaining osmotic force tends to “pull” water into the cell, causing it to
swell until the forces are balanced. Because all biological membranes are moder-
ately permeable to water (see Figure 11-2), cell volume equilibrates in minutes or
less in response to an osmotic gradient. For most animal cells, however, osmosis
has only a minor role in regulating cell volume. This is because most of the cyto-
plasm is in a gel-like state and resists large changes in its volume in response to
changes in osmolarity.

In addition to the direct diffusion of water across the lipid bilayer, some pro-
karyotic and eukaryotic cells have water channels, or aquaporins, embedded in
their plasma membrane to allow water to move more rapidly. Aquaporins are par-
ticularly abundant in animal cells that must transport water at high rates, such as
the epithelial cells of the kidney or exocrine cells that must transport or secrete
large volumes of fluids, respectively (Figure 11-19).

Aquaporins must solve a problem that is opposite to that facing ion channels.
To avoid disrupting ion gradients across membranes, they have to allow the rapid
passage of water molecules while completely blocking the passage of ions. The
three-dimensional structure of an aquaporin reveals how it achieves this remark-
able selectivity. The channels have a narrow pore that allows water molecules to
traverse the membrane in single file, following the path of carbonyl oxygens that
line one side of the pore (Figure 11-20A and B). Hydrophobic amino acids line
the other side of the pore. The pore is too narrow for any hydrated ion to enter, and
the energy cost of dehydrating an ion would be enormous because the hydropho-
bic wall of the pore cannot interact with a dehydrated ion to compensate for the
loss of water. This design readily explains why the aquaporins cannot conduct K*,

aquaporins duct

water

AN

—— fluid

apical membrane
ion pumps
and channels basolateral membrane

Figure 11-19 The role of aquaporins in
fluid secretion. Cells lining the ducts of
exocrine glands (as found, for example, in
the pancreas and liver, and in mammary,
sweat, and salivary glands) secrete large
volumes of body fluids. These cells are
organized into epithelial sheets in which
their apical plasma membrane faces the
lumen of the duct. lon pumps and channels
situated in the basolateral and apical
plasma membrane move ions (mostly
Nat and CI) into the ductal lumen,
creating an osmotic gradient between the
surrounding tissue and the duct. Water
molecules rapidly follow the osmotic
gradient through aquaporins that are
present in high concentrations in both the
apical and basolateral membranes.
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Na*, Ca?*, or Cl-ions. These channels are also impermeable to H*, which is mainly
present in cells as H3O*. These hydronium ions diffuse through water extremely
rapidly, using a molecular relay mechanism that requires the making and breaking
of hydrogen bonds between adjacent water molecules (Figure 11-20C). Aquapo-
rins contain two strategically placed asparagines, which bind to the oxygen atom
of the central water molecule in the line of water molecules traversing the pore,
imposing a bipolarity on the entire column of water molecules (Figure 11-20C and
D). This makes it impossible for the “making and breaking” sequence of hydrogen
bonds (shown in Figure 11-20C) to get past the central asparagine-bonded water
molecule. Because both valences of this central oxygen are unavailable for hydro-
gen-bonding, the central water molecule cannot participate in an H* relay, and
the pore is therefore impermeable to H*.
We now turn to ion channels, the subject of the rest of the chapter.

lon Channels Are lon-Selective and Fluctuate Between Open and
Closed States

Two important properties distinguish ion channels from aqueous pores. First,
they show ion selectivity, permitting some inorganic ions to pass, but not others.
This suggests that their pores must be narrow enough in places to force perme-
ating ions into intimate contact with the walls of the channel so that only ions of
appropriate size and charge can pass. The permeating ions have to shed most or
all of their associated water molecules to pass, often in single file, through the nar-
rowest part of the channel, which is called the selectivity filter; this limits their rate
of passage (Figure 11-21). Thus, as the ion concentration increases, the flux of the
ion through a channel increases proportionally but then levels off (saturates) at a

maximum rate.
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Figure 11-20 The structure of
aquaporins. (A) A ribbon diagram of an
aquaporin monomer. In the membrane,
aquaporins form tetramers, with each
monomer containing an aqueous pore

in its center (not shown). Each individual
aquaporin channel passes about 109
water molecules per second. (B) A
longitudinal cross section through one
aquaporin monomer, in the plane of the
central pore. One face of the pore is

lined with hydrophilic amino acids, which
provide transient hydrogen bonds to water
molecules; these bonds help line up the
transiting water molecules in a single

row and orient them as they traverse the
pore. (C and D) A model explaining why
aquaporins are impermeable to H*.

(C) In water, H* diffuses extremely rapidly
by being relayed from one water molecule
to the next. (D) Carbonyl groups (C=0)
lining the hydrophilic face of the pore align
water molecules, and two strategically
placed asparagines in the center help
tether a central water molecule such that
both valences on its oxygen are occupied.
This arrangement bipolarizes the entire
line of water molecules, with each water
molecule acting as a hydrogen-bond
acceptor from its inner neighbor (Movie
11.6). (A and B, adapted from R.M. Stroud
et al., Curr. Opin. Struct. Biol. 13:424-431,
2003. With permission from Elsevier.)

Figure 11-21 A typical ion channel,
which fluctuates between closed and
open conformations. The ion channel
shown here in cross section forms a pore
across the lipid bilayer only in the “open”
conformational state. The pore narrows

to atomic dimensions in one region (the
selectivity filter), where the ion selectivity of
the channel is largely determined. Another
region of the channel forms the gate.
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Figure 11-22 The gating of ion channels. This schematic drawing shows several kinds of stimuli
that open ion channels. Mechanically gated channels often have cytoplasmic extensions (not
shown) that link the channel to the cytoskeleton.

The second important distinction between ion channels and aqueous pores is
thation channels are not continuously open. Instead, they are gated, which allows
them to open briefly and then close again. Moreover, with prolonged (chemical or
electrical) stimulation, mostion channels go into a closed “desensitized,” or “inac-
tivated,” state, in which they are refractory to further opening until the stimulus
has been removed, as we discuss later. In most cases, the gate opens in response
to a specific stimulus. As shown in Figure 11-22, the main types of stimuli that are
known to cause ion channels to open are a change in the voltage across the mem-
brane (voltage-gated channels), a mechanical stress (mechanically gated chan-
nels), or the binding of a ligand (ligand-gated channels). The ligand can be either
an extracellular mediator—specifically, a neurotransmitter (transmitter-gated
channels)—or an intracellular mediator such as an ion (ion-gated channels) or
a nucleotide (nucleotide-gated channels). In addition, protein phosphorylation
and dephosphorylation regulates the activity of many ion channels; this type of
channel regulation is discussed, together with nucleotide-gated ion channels, in
Chapter 15.

More than 100 types of ion channels have been identified thus far, and new
ones are still being discovered, each characterized by the ions it conducts, the
mechanism by which itis gated, and its abundance and localization in the cell and
in specific cells. Ion channels are responsible for the electrical excitability of mus-
cle cells, and they mediate most forms of electrical signaling in the nervous sys-
tem. A single neuron typically contains 10 or more kinds of ion channels, located
in different domains of its plasma membrane. But ion channels are not restricted
to electrically excitable cells. They are present in all animal cells and are found in
plant cells and microorganisms: they propagate the leaf-closing response of the
mimosa plant, for example (Movie 11.7), and allow the single-celled Paramecium
to reverse direction after a collision.

Ion channels that are permeable mainly to K* are found in the plasma mem-
brane of almost all cells. An important subset of K* channels opens even in an
unstimulated or “resting” cell, and hence these are called K* leak channels.
Although this term applies to many different K* channels, depending on the cell
type, they serve a common purpose: by making the plasma membrane much
more permeable to K* than to other ions, they have a crucial role in maintaining
the membrane potential across all plasma membranes, as we discuss next.
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The Membrane Potential in Animal Cells Depends Mainly on K*
Leak Channels and the Kt Gradient Across the Plasma Membrane

A membrane potential arises when there is a difference in the electrical charge
on the two sides of a membrane, due to a slight excess of positive ions over neg-
ative ones on one side and a slight deficit on the other. Such charge differences
can result both from active electrogenic pumping (see p. 608) and from passive
ion diffusion. As we discuss in Chapter 14, electrogenic H* pumps in the mito-
chondrial inner membrane generate most of the membrane potential across this
membrane. Electrogenic pumps also generate most of the electrical potential
across the plasma membrane in plants and fungi. In typical animal cells, however,
passive ion movements make the largest contribution to the electrical potential
across the plasma membrane.

As explained earlier, due to the action of the Na*-K* pump, there is little Na*
inside the cell, and other intracellular inorganic cations have to be plentiful
enough to balance the charge carried by the cell’s fixed anions—the negatively
charged organic molecules that are confined inside the cell. This balancing role
is performed largely by K*, which is actively pumped into the cell by the Na*-
K* pump and can also move freely in or out through the K* leak channels in the
plasma membrane. Because of the presence of these channels, K* comes almost
to equilibrium, where an electrical force exerted by an excess of negative charges
attracting K* into the cell balances the tendency of K* to leak out down its con-
centration gradient. The membrane potential (of the plasma membrane) is the
manifestation of this electrical force, and we can calculate its equilibrium value
from the steepness of the K* concentration gradient. The following argument may
help to make this clear.

Suppose that initially there is no voltage gradient across the plasma membrane
(the membrane potential is zero) but the concentration of K* is high inside the cell
and low outside. K* will tend to leave the cell through the K* leak channels, driven
by its concentration gradient. As K* begins to move out, each ion leaves behind
an unbalanced negative charge, thereby creating an electrical field, or membrane
potential, which will tend to oppose the further efflux of K*. The net efflux of K*
halts when the membrane potential reaches a value at which this electrical driv-
ing force on K* exactly balances the effect of its concentration gradient—that is,
when the electrochemical gradient for K* is zero. Although Cl- ions also equili-
brate across the membrane, the membrane potential keeps most of these ions out
of the cell because their charge is negative.

The equilibrium condition, in which there is no net flow of ions across the
plasma membrane, defines the resting membrane potential for this idealized cell.
A simple but very important formula, the Nernst equation, quantifies the equilib-
rium condition and, as explained in Panel 11-1, makes it possible to calculate
the theoretical resting membrane potential if we know the ratio of internal and
external ion concentrations. As the plasma membrane of a real cell is not exclu-
sively permeable to K™ and CI-, however, the actual resting membrane potential
is usually not exactly equal to that predicted by the Nernst equation for K* or Cl".

The Resting Potential Decays Only Slowly When the
Nat-K* Pump Is Stopped

Movement of only a minute number of inorganic ions across the plasma mem-
brane through ion channels suffices to set up the membrane potential. Thus, we
can think of the membrane potential as arising from movements of charge that
leave ion concentrations practically unaffected and result in only a very slight
discrepancy in the number of positive and negative ions on the two sides of the
membrane (Figure 11-23). Moreover, these movements of charge are generally
rapid, taking only a few milliseconds or less.

Consider the change in the membrane potential in a real cell after the sudden
inactivation of the Na*-K* pump. A slight drop in the membrane potential occurs
immediately. This is because the pump is electrogenic and, when active, makes a
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PANEL 11-1: The Derivation of the Nernst Equation

THE NERNST EQUATION AND ION FLOW

The flow of any inorganic ion through a membrane
channel is driven by the electrochemical gradient for that
ion. This gradient represents the combination of two
influences: the voltage gradient and the concentration
gradient of the ion across the membrane. When these
two influences just balance each other, the
electrochemical gradient for the ion is zero, and there is
no net flow of the ion through the channel. The voltage
gradient (membrane potential) at which this equilibrium
is reached is called the equilibrium potential for the ion.
It can be calculated from an equation that will be derived
below, called the Nernst equation.

The Nernst equation is

where

V = the equilibrium potential in volts (internal
potential minus external potential)

C, and C; = outside and inside concentrations of the
ion, respectively

R =the gas constant (8.3 J mol™ K"

T = the absolute temperature (K)

F = Faraday'’s constant (9.6 x 10* J V' mol")

z = the valence (charge) of the ion

In = logarithm to the base e

The Nernst equation is derived as follows:

A molecule in solution (a solute) tends to move from a
region of high concentration to a region of low
concentration simply due to the random movement of
molecules, which results in their equilibrium.
Consequently, movement down a concentration gradient
is accompanied by a favorable free-energy change

(AG < 0), whereas movement up a concentration gradient
is accompanied by an unfavorable free-energy change
(AG > 0). (Free energy is introduced in Chapter 2 and
discussed in the context of redox reactions in

Panel 14-1, p. 765.)

The free-energy change per mole of solute moved across
the plasma membrane (AG,, ) is equal to -RT In C,/ C,.

If the solute is an ion, moving it into a cell across a
membrane whose inside is at a voltage V relative to the
outside will cause an additional free-energy change (per
mole of solute moved) of AG,; = zFV.

At the point where the concentration and voltage
gradients just balance,
AGv:onc + AGvolt =0

and the ion distribution is at equilibrium across the
membrane.

Thus, c
ZFV - RT In C—° =0

]
and, therefore,
V: E In&
zF G

or, using the constant that converts natural logarithms to

base 10,
C

So
G

RT
V=23—I
2F 0910

For a univalent cation,

RT

2.3 =58 mV at 20°C and 61.5 mV at 37°C.

Thus, for such an ion at 37°C,

V=+61.5mV for C,/C =10,
whereas
V=0forC,/C=1.

The K* equilibrium potential (V,), for example, is
61.5 log;o([K*], / [K*];) millivolts

(-89 mV for a typical cell, where [K*], =5 mM
and [K*]; = 140 mM).

At V, there is no net flow of K* across the membrane.

Similarly, when the membrane potential has a value of
61.5 log;o([Na*], /[Na*]y),
the Na* equilibrium potential (Vy,),
there is no net flow of Na*.

For any particular membrane potential, V), the net

force tending to drive a particular type of ion out of the
cell, is proportional to the difference between V}, and the
equilibrium potential for the ion: hence,

for K* it is Vjy, — Vg
and for Na* it is Vj; — V..

When there is a voltage gradient across the membrane,
the ions responsible for it—the positive ions on one side
and the negative ions on the other—are concentrated in
thin layers on either side of the membrane because of the
attraction between positive and negative electric charges.
The number of ions that go to form the layer of charge
adjacent to the membrane is minute compared with the
total number inside the cell. For example, the movement
of 6000 Na* ions across 1 um? of membrane will carry
sufficient charge to shift the membrane potential by
about 100 mV.

Because there are about 3 x 107 Na* ions in a typical cell
(1 pm3 of bulk cytoplasm), such a movement of charge
will generally have a negligible effect on the ion
concentration gradients across the membrane.
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small direct contribution to the membrane potential by pumping out three Na*
for every two K* that it pumps in (see Figure 11-15). However, switching off the
pump does not abolish the major component of the resting potential, which is
generated by the K* equilibrium mechanism just described. This component of
the membrane potential persists as long as the Na* concentration inside the cell
stays low and the K* ion concentration high—typically for many minutes. But the
plasma membrane is somewhat permeable to all small ions, including Na*. There-
fore, without the Na*-K* pump, the ion gradients set up by the pump will eventu-
ally run down, and the membrane potential established by diffusion through the
K* leak channels will fall as well. As Na* enters, the cell eventually comes to a new
resting state where Na*, K*, and Cl~ are all at equilibrium across the membrane.
The membrane potential in this state is much less than it was in the normal cell
with an active Na*-K* pump.

The resting potential of an animal cell varies between -20 mV and -120 mV,
depending on the organism and cell type. Although the K* gradient always has a
major influence on this potential, the gradients of other ions (and the disequili-
brating effects of ion pumps) also have a significant effect: the more permeable
the membrane for a given ion, the more strongly the membrane potential tends to
be driven toward the equilibrium value for that ion. Consequently, changes in a
membrane’s permeability to ions can cause significant changes in the membrane
potential. This is one of the key principles relating the electrical excitability of cells
to the activities of ion channels.

To understand how ion channels select their ions and how they open and
close, we need to know their atomic structure. The first ion channel to be crystal-
lized and studied by x-ray diffraction was a bacterial K* channel. The details of its
structure revolutionized our understanding of ion channels.

The Three-Dimensional Structure of a Bacterial Kt Channel Shows
How an lon Channel Can Work

Scientists were puzzled by the remarkable ability of ion channels to combine
exquisite ion selectivity with a high conductance. K* leak channels, for exam-
ple, conduct K* 10,000-fold faster than Na*, yet the two ions are both featureless
spheres and have similar diameters (0.133 nm and 0.095 nm, respectively). A sin-
gle amino acid substitution in the pore of an animal cell K* channel can result in
aloss of ion selectivity and cell death. We cannot explain the normal K* selectivity
by pore size, because Na* is smaller than K*. Moreover, the high conductance rate
is incompatible with the channel’s having selective, high-affinity K*-binding sites,
as the binding of K* ions to such sites would greatly slow their passage.

The puzzle was solved when the structure of a bacterial K* channel was deter-
mined by x-ray crystallography. The channel is made from four identical trans-
membrane subunits, which together form a central pore through the membrane.
Each subunit contributes two transmembrane o helices, which are tilted outward
in the membrane and together form a cone, with its wide end facing the outside of
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Figure 11-23 The ionic basis of a
membrane potential. A small flow of
inorganic ions through an ion channel
carries sufficient charge to cause a large
change in the membrane potential. The
ions that give rise to the membrane
potential lie in a thin (< 1 nm) surface layer
close to the membrane, held there by
their electrical attraction to their oppositely
charged counterparts (counterions) on the
other side of the membrane. For a typical
cell, 1 microcoulomb of charge (6 x 1012
monovalent ions) per square centimeter of
membrane, transferred from one side of
the membrane to the other, changes the
membrane potential by roughly 1 V. This
means, for example, that in a spherical cell
of diameter 10 um, the number of K* ions
that have to flow out to alter the membrane
potential by 100 mV is only about
1/100,000 of the total number of K* ions in
the cytosol. This amount is so minute that
the intracellular K+ concentration remains
virtually unchanged.
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Figure 11-24 The structure of a bacterial K* channel. (A) The transmembrane a helices from only two of the four identical
subunits are shown. From the cytosolic side, the pore (schematically shaded in blug) opens up into a vestibule in the middle of
the membrane. The pore vestibule facilitates transport by allowing the K* ions to remain hydrated even though they are more

than halfway across the membrane. The narrow selectivity filter of the pore links the vestibule to the outside of the cell. Carbonyl
oxygens line the walls of the selectivity filter and form transient binding sites for dehydrated K* ions. Two K* ions occupy different
sites in the selectivity filter, while a third K* ion is located in the center of the vestibule, where it is stabilized by electrical interactions
with the more negatively charged ends of the pore helices. The ends of the four short “pore helices” (only two of which are shown)
point precisely toward the center of the vestibule, thereby guiding K* ions into the selectivity filter (Movie 11.8). (B) Peptide bonds
have an electric dipole, with more negative charge accumulated at the oxygen of the C=0 bond and at the nitrogen of the

N-H bond. In an a helix, hydrogen bonds (red) align the dipoles. As a consequence, every a helix has an electric dipole along its
axis, resulting from summation of the dipoles of the individual peptide bonds, with a more negatively charged C-terminal end (57)
and a more positively charged N-terminal end (8+). (A, adapted from D.A. Doyle et al., Science 280:69-77, 1998.)

the cell where K* ions exit from the channel (Figure 11-24). The polypeptide chain
that connects the two transmembrane helices forms a short o helix (the pore helix)
and a crucial loop that protrudes into the wide section of the cone to form the
selectivity filter. The selectivity loops from the four subunits form a short, rigid,
narrow pore, which is lined by the carbonyl oxygen atoms of their polypeptide
backbones. Because the selectivity loops of all known K* channels have similar
amino acid sequences, it is likely that they form a closely similar structure.

The structure of the selectivity filter explains the ion selectivity of the channel.
A K*ion must lose almost all of its bound water molecules to enter the filter, where
it interacts instead with the carbonyl oxygens lining the filter; the oxygens are rig-
idly spaced at the exact distance to accommodate a K* ion. A Na* ion, in contrast,
cannot enter the filter because the carbonyl oxygens are too far away from the
smaller Na* ion to compensate for the energy expense associated with the loss of
water molecules required for entry (Figure 11-25).

Structural studies of K* channels and other ion channels have also indicated
some general principles of how these channels open and close. The gating involves
movement of the helices in the membrane so that they either obstruct or open the
path for ion movement. Depending on the particular type of channel, helices tilt,
rotate, or bend during gating. The structure of a closed K* channel shows that by
tilting the inner helices, the pore constricts like a diaphragm at its cytosolic end
(Figure 11-26). Bulky hydrophobic amino acid side chains block the small open-
ing that remains, preventing the entry of ions.

Many other ion channels operate on similar principles: the channel’s gating
helices are allosterically coupled to domains that form the ion-conducting path-
way; and a conformational change in the gate—in response, say, to ligand binding
or altered membrane potential —brings about conformational change in the con-
ducting pathway, either opening it or blocking it off.
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Mechanosensitive Channels Protect Bacterial Cells Against
Extreme Osmotic Pressures

All organisms, from single-cell bacteria to multicellular animals and plants, must
sense and respond to mechanical forces in their external environment (such as
sound, touch, pressure, shear forces, and gravity) and in their internal environ-
ment (such as osmotic pressure and membrane bending). Numerous proteins are
known to be capable of responding to such mechanical forces, and a large subset
of those proteins has been identified as possible mechanosensitive channels, but
very few of the candidate proteins have been shown directly to be mechanically
activated ion channels. One reason for this dearth in our knowledge is that most
such channels are extremely rare. Auditory hair cells in the human cochlea, for
example, contain extraordinarily sensitive mechanically gated ion channels, but
each of the approximately 15,000 individual hair cells is thought to have a total of
only 50-100 of them (Movie 11.9). Additional difficulties arise because the gating
mechanisms of many mechanosensitive channel types require the channels to be
embedded in complex architectures that require attachment to the extracellular
matrix or to the cytoskeleton and are difficult to reconstitute in the test tube. The
study of mechanosensitive receptors is a field of active investigation.

A well-studied class of mechanosensitive channels is found in the bacterial
plasma membrane. These channels open in response to mechanical stretch-
ing of the lipid bilayer in which they are embedded. When a bacterium experi-
ences a low-ionic-strength external environment (hypotonic conditions), such as
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Figure 11-25 K* specificity of the
selectivity filter in a K* channel. The
drawings show K* and Na* ions (A) in the
vestibule and (B) in the selectivity filter of
the pore, viewed in cross section. In the
vestibule, the ions are hydrated. In the
selectivity filter, they have lost their water,
and the carbonyl oxygens are placed to
accommodate a dehydrated K* ion. The
dehydration of the K* ion requires energy,
which is precisely balanced by the energy
regained by the interaction of the ion with
all of the carbonyl oxygens that serve as
surrogate water molecules. Because the
Nat ion is too small to interact with the
oxygens, it can enter the selectivity filter
only at a great energetic expense. The
filter therefore selects K* ions with high
specificity. (A, adapted from Y. Zhou et al.,
Nature 414:43-48, 2001. With permission
from Macmillan Publishers Ltd.)

Figure 11-26 A model for the gating

of a bacterial K* channel. The channel
is viewed in cross section. To adopt

the closed conformation, the four inner
transmembrane helices that line the pore
on the cytosolic side of the selectivity filter
(see Figure 11-24) rearrange to close the
cytosolic entrance to the channel.
(Adapted from E. Perozo et al., Science
285:73-78, 1999.)
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rainwater, the cell swells as water seeps in due to an increase in the osmotic pres-
sure. If the pressure rises to dangerous levels, the cell opens mechanosensitive
channels that allow small molecules to leak out. Bacteria that are experimentally
placed in fresh water can rapidly lose more than 95% of their small molecules in
this manner, including amino acids, sugars, and potassium ions. However, they
keep their macromolecules safely inside and thus can recover quickly after envi-
ronmental conditions return to normal.

Mechanical gating has been demonstrated using biophysical techniques in
which force is exerted on pure lipid bilayers containing the bacterial mechano-
sensitive channels; for example, by applying suction with a micropipette. Such
measurements demonstrate that the cell has several different channels that open
at different levels of pressure. The mechanosensitive channel of small conduc-
tance, called the MscS channel, opens at low and moderate pressures (Figure
11-27). It is composed of seven identical subunits, which in the open state form a
pore about 1.3 nm in diameter—just big enough to pass ions and small molecules.
Large cytoplasmic domains limit the size of molecules that can reach the pore.
The mechanosensitive channel of large conductance, called the MscL channel,
opens to over 3 nm in diameter when the pressure gets so high that the cell might
burst.

The Function of a Neuron Depends on Its Elongated Structure

The cells that make most sophisticated use of channels are neurons. Before dis-
cussing how they do so, we digress briefly to describe how a typical neuron is
organized.

The fundamental task of a neuron, or nerve cell, is to receive, conduct, and
transmit signals. To perform these functions, neurons are often extremely elon-
gated. In humans, for example, a single neuron extending from the spinal cord to
amuscle in the foot may be as long as 1 meter. Every neuron consists of a cell body
(containing the nucleus) with a number of thin processes radiating outward from
it. Usually one long axon conducts signals away from the cell body toward distant

Membrane Transport of Small Molecules and the Electrical Properties of Membranes

Figure 11-27 The structure of
mechanosensitive channels. The crystal
structures of MscS in its (A) closed and
(B) open conformation are shown. The
side views (lower panels) show the entire
protein, including the large intracellular
domain. The face views (upper panels)
show the transmembrane domains only.
The open structure occupies more area in
the lipid bilayer and is energetically favored
when a membrane is stretched. This may
explain why the MscS channel opens as
pressure builds up inside the cell. (PDB
codes: 20AU, 2W5.)
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targets, and several shorter, branching dendrites extend from the cell body like
antennae, providing an enlarged surface area to receive signals from the axons
of other neurons (Figure 11-28), although the cell body itself also receives such
signals. A typical axon divides at its far end into many branches, passing on its
message to many target cells simultaneously. Likewise, the extent of branching
of the dendrites can be very great—in some cases sufficient to receive as many as
100,000 inputs on a single neuron.

Despite the varied significance of the signals carried by different classes of
neurons, the form of the signal is always the same, consisting of changes in the
electrical potential across the neuron’s plasma membrane. The signal spreads
because an electrical disturbance produced in one part of the membrane spreads
to other parts, although the disturbance becomes weaker with increasing distance
from its source, unless the neuron expends energy to amplify it as it travels. Over
short distances, this attenuation is unimportant; in fact, many small neurons con-
duct their signals passively, without amplification. For long-distance communi-
cation, however, such passive spread is inadequate. Thus, larger neurons employ
an active signaling mechanism, which is one of their most striking features. An
electrical stimulus that exceeds a certain threshold strength triggers an explosion
of electrical activity that propagates rapidly along the neuron’s plasma membrane
and is sustained by automatic amplification all along the way. This traveling wave
of electrical excitation, known as an action potential, or nerve impulse, can carry
a message without attenuation from one end of a neuron to the other at speeds of
100 meters per second or more. Action potentials are the direct consequence of
the properties of voltage-gated cation channels, as we now discuss.

Voltage-Gated Cation Channels Generate Action Potentials in
Electrically Excitable Cells

The plasma membrane of all electrically excitable cells—not only neurons, but
also muscle, endocrine, and egg cells—contains voltage-gated cation channels,
which are responsible for generating the action potentials. An action potential
is triggered by a depolarization of the plasma membrane—that is, by a shift in
the membrane potential to a less negative value inside. (We shall see later how
the action of a neurotransmitter causes depolarization.) In nerve and skeletal
muscle cells, a stimulus that causes sufficient depolarization promptly opens the
voltage-gated Na* channels, allowing a small amount of Na* to enter the cell down
its electrochemical gradient. The influx of positive charge depolarizes the mem-
brane further, thereby opening more Na* channels, which admit more Na* ions,
causing still further depolarization. This self-amplification process (an example of
positive feedback, discussed in Chapters 8 and 15) continues until, within a frac-
tion of a millisecond, the electrical potential in the local region of membrane has
shifted from its resting value of about -70 mV (in squid giant axon; about -40 mV
in human) to almost as far as the Na* equilibrium potential of about +50 mV (see
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Figure 11-28 A typical vertebrate
neuron. The arrows indicate the
direction in which signals are conveyed.
The single axon conducts signals

away from the cell body, while the
multiple dendrites (and the cell body)
receive signals from the axons of other
neurons. The axon terminals end on the
dendrites or cell body of other neurons
or on other cell types, such as muscle
or gland cells.
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Panel 11-1, p. 616). At this point, when the net electrochemical driving force for
the flow of Na* is almost zero, the cell would come to a new resting state, with all of
its Na* channels permanently open, if the open conformation of the channel were
stable. Two mechanisms act in concert to save the cell from such a permanent
electrical spasm: the Na* channels automatically inactivate and voltage-gated K*
channels open to restore the membrane potential to its initial negative value.

The Na* channel is built from a single polypeptide chain that contains four
structurally very similar domains. It is thought that these domains evolved by
gene duplication followed by fusion into a single large gene (Figure 11-29A). In
bacteria, in fact, the Na* channel is a tetramer of four identical polypeptide chains,
supporting this evolutionary idea.

Each domain contributes to the central channel, which is very similar to the K*
channel. Each domain also contains a voltage sensor that is characterized by an
unusual transmembrane helix, S4, that contains many positively charged amino
acids. As the membrane depolarizes, the S4 helices experience an electrostatic
pulling force that attracts them to the now negatively charged extracellular side of
the plasma membrane. The resulting conformational change opens the channel.
The structure of a bacterial voltage-gated Na* channel provides insights how the
structural elements are arranged in the membrane (Figure 11-29B and C).

The Na* channels also have an automatic inactivating mechanism, which
causes the channels to reclose rapidly even though the membrane is still depolar-
ized (see Figure 11-30). The Na* channels remain in this inactivated state, unable
to reopen, until after the membrane potential has returned to its initial negative
value. The time necessary for a sufficient number of Na* channels to recover from
inactivation to support a new action potential, termed the refractory period, limits

Figure 11-29 Structural models of
voltage-gated Na* channels. (A) The
channel in animal cells is built from a
single polypeptide chain that contains

four homologous domains. Each domain
contains two transmembrane o helices
(green) that surround the central ion-
conducting pore. They are separated by
sequences (blue) that form the selectivity
filter. Four o additional helices (gray

and red) in each domain constitute the
voltage sensor. The S4 helices (red) are
unique in that they contain an abundance
of positively charged arginines. An
inactivation gate that is part of a flexible
loop connecting the third and fourth
domains acts as a plug that obstructs the
pore in the channel’s inactivated state, as
shown in Figure 11-30. (B) Side and top
views of a homologous bacterial channel
protein showing its arrangement within the
membrane. (C) A cross section of the pore
domain of the channel shown in (B) shows
lateral portals, through which the central
cavity is accessible from the hydrophobic
core of the lipid bilayer. In the crystals, lipid
acyl chains were found to intrude into the
pore. These lateral portals are large enough
to allow entry of small, hydrophobic, pore-
blocking drugs that are commonly used as
anesthetics and block ion conductance.
(PDB code: 3RVZ.)
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Figure 11-30 Na* channels and an action potential. (A) An action potential is triggered by a brief pulse of current, which

(B) partially depolarizes the membrane, as shown in the plot of membrane potential versus time. The green curve shows how
the membrane potential would have simply relaxed back to the resting value after the initial depolarizing stimulus if there had
been no voltage-gated Na* channels in the membrane. The red curve shows the course of the action potential that is caused
by the opening and subsequent inactivation of voltage-gated Na* channels. The states of the Na* channels are indicated

n (B). The membrane cannot fire a second action potential until the Na* channels have returned from the inactivated to the
closed conformation; until then, the membrane is refractory to stimulation. (C) The three states of the Na* channel. When the
membrane is at rest (highly polarized), the closed conformation of the channel has the lowest free energy and is therefore most
stable; when the membrane is depolarized, the energy of the open conformation is lower, so the channel has a high probability
of opening. But the free energy of the inactivated conformation is lower still; therefore, after a randomly variable period spent in
the open state, the channel becomes inactivated. Thus, the open conformation corresponds to a metastable state that can exist

only transiently when the membrane depolarizes (Movie 11.10).

the repetitive firing rate of a neuron. The cycle from initial stimulus to the return
to the original resting state takes a few milliseconds or less. The Na* channel can
therefore exist in three distinct states—closed, open, and inactivated—which con-
tribute to the rise and fall of the action potential (Figure 11-30).

This description of an action potential applies only to a small patch of plasma
membrane. The self-amplifying depolarization of the patch, however, is sufficient
to depolarize neighboring regions of membrane, which then go through the same
cycle. In this way, the action potential sweeps like a wave from the initial site of
depolarization over the entire plasma membrane, as shown in Figure 11-31.

The Use of Channelrhodopsins Has Revolutionized the Study of
Neural Circuits

Channelrhodopsins are photosensitive ion channels that open in response to
light. They evolved as sensory receptors in photosynthetic green algae to allow
the algae to swim toward light. The structure of channelrhodopsin closely resem-
bles that of bacteriorhodopsin (see Figure 10-31). It contains a covalently bound
retinal group that absorbs light and undergoes an isomerization reaction, which
triggers a conformational change in the protein, opening an ion channel in the
plasma membrane. In contrast to bacteriorhodopsin, which is a light-driven pro-
ton pump, channelrhodopsin is a light-driven cation channel.

Using genetic engineering techniques, channelrhodopsin can be expressed
in virtually any cell type in vertebrates and invertebrates. Researchers first
introduced the gene into cultured neurons and showed that flashing light could
now activate the channelrhodopsin and induce the neurons to fire action poten-
tials. Because the frequency of the light flashes determined the frequency of the
action potentials, one can control the frequency of neuronal firing with milli-
second precision.

Next, neurobiologists used the approach to activate specific neurons in the
brain of experimental animals. Using a tiny fiber optic cable implanted near the
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PROPAGATION Figure 11-31 The propagation of an action potential along an axon. (A) The
voltages that would be recorded from a set of intracellular electrodes placed at
axon intervals along the axon. (B) The changes in the Na* channels and the current flows
|\ | |\ (curved red arrows) that give rise to a traveling action potential. The region of the
’l\ ’l\ ’l\ axon with a depolarized membrane is shaded in blue. Note that once an action
potential has started to progress, it has to continue in the same direction, traveling
Vi V2 Vs only away from the site of depolarization, because Na*-channel inactivation
prevents the depolarization from spreading backward.
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relevant brain region, they could flash light to specifically activate the channel-
rhodopsin-containing neurons to fire action potentials. One group of researchers
expressed channelrhodopsin in a subset of mouse neurons thought to be involved
in aggression: when these cells were activated by light, the mouse immediately
attacked anything in its environment—including other mice or even an inflated
rubber glove (Figure 11-32); when the light was switched off, the neurons fell
silent and the mouse’s behavior returned to normal.

Since these pioneering studies, researchers have engineered additional
light-responsive ion channels and transporters, including some that can rapidly

LIGHT OFF

LIGHT ON

LIGHT OFF

Figure 11-32 Optogenetic control of
aggression neurons in a living mouse.

A gene encoding channelrhodopsin was
introduced into a subpopulation of neurons
in the hypothalamus of a mouse. When the
neurons were exposed to flashing blue light
using a tiny, implanted fiber optic cable,
the channelrhodopsin channels opened,
depolarizing and activating the cells.

When the light was switched on, the
mouse immediately became aggressive
and attacked the inflated rubber glove;
when the light was switched off, its
behavior immediately returned to normal
(Movie 11.11). (From D. Lin et al., Nature
470:221-226, 2011. With permission from
Macmillan Publishers Ltd.)
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inactivate specific neurons. It is therefore now possible to transiently activate or
inhibit specific neurons in the brains of awake animals with remarkable spatial
and temporal precision. In this way, the rapidly expanding new field of optoge-
netics is revolutionizing neurobiology, allowing neuroscientists to analyze the
neurons and circuits underlying even the most complex behaviors in experimen-
tal animals, including nonhuman primates.

Myelination Increases the Speed and Efficiency of Action Potential
Propagation in Nerve Cells

The axons of many vertebrate neurons are insulated by a myelin sheath, which
greatly increases the rate at which an axon can conduct an action potential. The
importance of myelination is dramatically demonstrated by the demyelinating
disease multiple sclerosis, in which the immune system destroys myelin sheaths in
some regions of the central nervous system; in the affected regions, nerve impulse
propagation greatly slows or even fails, often with devastating neurological con-
sequences.

Myelin is formed by specialized non-neuronal supporting cells called glial
cells. Schwann cells are the glial cells that myelinate axons in peripheral nerves,
and oligodendrocytes do so in the central nervous system. These myelinating
glial cells wrap layer upon layer of their own plasma membrane in a tight spiral
around the axon (Figure 11-33A and B), thereby insulating the axonal membrane
so thatlittle current can leak across it. The myelin sheath is interrupted at regularly
spaced nodes of Ranvier, where almost all the Na* channels in the axon are con-
centrated (Figure 11-33C). This arrangement allows an action potential to prop-
agate along a myelinated axon by jumping from node to node, a process called
saltatory conduction. This type of conduction has two main advantages: action
potentials travel very much faster, and metabolic energy is conserved because the
active excitation is confined to the small regions of axonal plasma membrane at
nodes of Ranvier.
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Figure 11-33 Myelination.

(A) A myelinated axon from a peripheral
nerve. Each Schwann cell wraps its
plasma membrane concentrically around
the axon to form a segment of myelin
sheath about 1 mm long. For clarity,
the membrane layers of the myelin are
shown less compacted than they are

in reality (see part B). (B) An electron
micrograph of a nerve in the leg of a
young rat. Two Schwann cells can

be seen: one near the bottom is just
beginning to myelinate its axon; the
one above it has formed an almost
mature myelin sheath. (C) Fluorescence
micrograph and diagram of individual
myelinated axons teased apart in a rat
optic nerve, showing the confinement
of the voltage-gated Na* channels
(green) in the axonal membrane at the
node of Ranvier. A protein called Caspr
(red) marks the junctions where the
myelinating glial cell plasma membrane
tightly abuts the axon on either side of
the node. Voltage-gated K* channels
(blue) localize to regions in the axon
plasma membrane well away from the
node. (B, from Cedric S. Raine, in Myelin
[P. Morell, ed.]. New York: Plenum, 1976;
C, from M.N. Rasband and P. Shrager,
J. Physiol. 525:63-73, 2000. With
permission from Blackwell Publishing.)
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Patch-Clamp Recording Indicates That Individual lon Channels
Open in an All-or-Nothing Fashion

Neuron and skeletal muscle cell plasma membranes contain many thousands of
voltage-gated Na* channels, and the current crossing the membrane is the sum
of the currents flowing through all of these. An intracellular microelectrode can
record this aggregate current, as shown in Figure 11-31A. Remarkably, however,
it is also possible to record current flowing through individual channels. Patch-
clamp recording, developed in the 1970s and 1980s, revolutionized the study of
ion channels and made it possible to examine transport through a single chan-
nel in a small patch of membrane covering the mouth of a micropipette (Figure
11-34). With this simple but powerful technique, one can study the detailed prop-
erties of ion channels in all sorts of cell types. This work led to the discovery that
even cells that are not electrically excitable usually have a variety of ion channels
in their plasma membrane. Many of these cells, such as yeasts, are too small to be
investigated by the traditional electrophysiologist’s method of impalement with
an intracellular microelectrode.

Patch-clamp recording indicates that individual ion channels open in an all-
or-nothing fashion. For example, a voltage-gated Na* channel opens and closes
at random, but when open, the channel always has the same large conductance,
allowing more than 1000 ions to pass per millisecond (Figure 11-35). Therefore,
the aggregate current crossing the membrane of an entire cell does not indicate
the degree to which a typical individual channel is open but rather the total num-
ber of channels in its membrane that are open at any one time.

Some simple physical principles allow us to refine our understanding of volt-
age-gating from the perspective of a single Na* channel. The interior of the resting
neuron or muscle cell is at an electrical potential about 40-100 mV more negative
than the external medium. Although this potential difference seems small, it exists
across a plasma membrane only about 5 nm thick, so that the resulting voltage
gradient is about 100,000 V/cm. Charged proteins in the membrane such as Na*
channels are thus subjected to a very large electrical field that can profoundly
affect their conformation. Each conformation can “flip” to another conformation if
given a sufficient jolt by the random thermal movements of the surroundings, and
itis the relative stability of the closed, open, and inactivated conformations against
flipping that is altered by changes in the membrane potential (see Figure 11-30C).

Voltage-Gated Cation Channels Are Evolutionarily and Structurally
Related

Na* channels are not the only kind of voltage-gated cation channel that can gen-
erate an action potential. The action potentials in some muscle, egg, and endo-
crine cells, for example, depend on voltage-gated Ca®* channels rather than on
Na* channels.

gentle suction }._ 1 um _.‘
(A) f (B)

pull micropipette
away from cell

glass
N A _— to detach the
micropipette patch of
membrane
tight
seal r
cell
ion channels membrane = RS
CYTOSOL

Figure 11-34 The technique of
patch-clamp recording. Because of

the extremely tight seal between the
micropipette and the membrane, current
can enter or leave the micropipette only
by passing through the ion channels in the
patch of membrane covering its tip. The
term clamp is used because an electronic
device is employed to maintain, or “clamp,”
the membrane potential at a set value
while recording the ionic current through
individual channels. The current through
these channels can be recorded with

the patch still attached to the rest of the
cell, as in (A), or detached, as in (B). The
advantage of the detached patch is that

it is easy to alter the composition of the
solution on either side of the membrane to
test the effect of various solutes on channel
behavior. A detached patch can also be
produced with the opposite orientation,

so that the cytoplasmic surface of the
membrane faces the inside of the pipette.
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There is a surprising amount of structural and functional diversity within each
of the different classes of voltage-gated cation channels, generated both by mul-
tiple genes and by the alternative splicing of RNA transcripts produced from the
same gene. Nonetheless, the amino acid sequences of the known voltage-gated
Na*, K*, and Ca?* channels show striking similarities, demonstrating that they all
belong to a large superfamily of evolutionarily and structurally related proteins
and share many of the design principles. Whereas the single-celled yeast S. cerevi-
siae contains a single gene that codes for a voltage-gated K* channel, the genome
of the worm C. elegans contains 68 genes that encode different but related K*
channels. This complexity indicates that even a simple nervous system made up
of only 302 neurons uses a large number of different ion channels to compute its
responses.

Humans who inherit mutant genes encoding ion channels can suffer from a
variety of nerve, muscle, brain, or heart diseases, depending in which cells the
channel encoded by the mutant gene normally functions. Mutations in genes
that encode voltage-gated Na* channels in skeletal muscle cells, for example, can
cause myotonia, a condition in which there is a delay in muscle relaxation after
voluntary contraction, causing painful muscle spasms. In some cases, this occurs
because the abnormal channels fail to inactivate normally; as a result, Na* entry
persists after an action potential finishes and repeatedly reinitiates membrane
depolarization and muscle contraction. Similarly, mutations that affect Na* or K*
channels in the brain can cause epilepsy, in which excessive synchronized firing of
large groups of neurons causes epileptic seizures (convulsions, or fits).

The particular combination of ion channels conducting Na*, K*, and Ca2t
that are expressed in a neuron largely determines how the cell fires repetitive
sequences of action potentials. Some nerve cells can repeat action potentials up
to 300 times per second; other neurons fire short bursts of action potentials sepa-
rated by periods of silence; while others rarely fire more than one action potential
at a time. There is a remarkable diversity of neurons in the brain.

Different Neuron Types Display Characteristic Stable Firing
Properties

It is estimated that the human brain contains about 10! neurons and 10'# synap-
tic connections. To make matters more complex, neural circuitry is continuously
sculpted in response to experience, modified as we learn and store memories,
and irreversibly altered by the gradual loss of neurons and their connections as
we age. How can a system so complex be subject to such change and yet con-
tinue to function stably? One emerging theory suggests that individual neurons
are self-tuning devices, constantly adjusting the expression of ion channels and
neurotransmitter receptors in order to maintain a stable function. How might this
work?

Neurons can be categorized into functionally different types, based in part on
their propensity to fire action potentials and their pattern of firing. For example,
some neurons fire action potentials at high frequencies, while others fire rarely.
The firing properties of each neuron type are determined to a large extent by the
ion channels that the cell expresses. The number of ion channels in a neuron’s
membrane is not fixed: as conditions change, a neuron can modify the num-
bers of depolarizing (Na* and Ca?*) and hyperpolarizing (K*) channels and keep
their proportions adjusted so as to maintain its characteristic firing behavior—a
remarkable example of homeostatic control. The molecular mechanisms involved
remain an important mystery.

Transmitter-Gated lon Channels Convert Chemical Signals into
Electrical Ones at Chemical Synapses

Neuronal signals are transmitted from cell to cell at specialized sites of contact
known as synapses. The usual mechanism of transmission is indirect. The cells are
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Figure 11-35 Patch-clamp
measurements for a single voltage-
gated Na* channel. A tiny patch of
plasma membrane was detached from
an embryonic rat muscle cell, as in Figure
11-34. (A) The membrane was depolarized
by an abrupt shift of potential from —90 to
about —40 mV. (B) Three current records
from three experiments performed on

the same patch of membrane. Each
major current step in (B) represents the
opening and closing of a single channel.
A comparison of the three records shows
that, whereas the durations of channel
opening and closing vary greatly, the rate
at which current flows through an open
channel (its conductance) is practically
constant. The minor fluctuations in

the current records arise largely from
electrical noise in the recording apparatus.
Current flowing into the cell, measured

in picoamperes (pA), is shown as a
downward deflection of the curve. By
convention, the electrical potential on the
outside of the cell is defined as zero.

(C) The sum of the currents measured in
144 repetitions of the same experiment.
This aggregate current is equivalent to the
usual Na* current that would be observed
flowing through a relatively large region
of membrane containing 144 channels.

A comparison of (B) and (C) reveals that
the time course of the aggregate current
reflects the probability that any individual
channel will be in the open state; this
probability decreases with time as the
channels in the depolarized membrane
adopt their inactivated conformation.
(Data from J. Patlak and R. Horn,

J. Gen. Physiol. 79:333-351, 1982.

With permission from The Rockefeller
University Press.)
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Figure 11-36 A chemical synapse. (A) When an action potential reaches
the nerve terminal in a presynaptic cell, it stimulates the terminal to release
its neurotransmitter. The neurotransmitter molecules are contained in
synaptic vesicles and are released to the cell exterior when the vesicles
fuse with the plasma membrane of the nerve terminal. The released
neurotransmitter binds to and opens the transmitter-gated ion channels
concentrated in the plasma membrane of the postsynaptic target cell at

the synapse. The resulting ion flows alter the membrane potential of the
postsynaptic membrane, thereby transmitting a signal from the excited nerve (B)
(Movie 11.12). (B) A thin-section electron micrograph of two nerve terminal
synapses on a dendrite of a postsynaptic cell. (B, courtesy of Cedric Raine.)

presynaptic
membrane

electrically isolated from one another, the presynaptic cell being separated from
the postsynaptic cell by a narrow synaptic cleft. When an action potential arrives
at the presynaptic site, the depolarization of the membrane opens voltage-gated
Ca?* channels that are clustered in the presynaptic membrane. Ca?* influx trig-
gers the release into the cleft of small signal molecules known as neurotransmit-
ters, which are stored in membrane-enclosed synaptic vesicles and released by
exocytosis (discussed in Chapter 13). The neurotransmitter diffuses rapidly across
the synaptic cleft and provokes an electrical change in the postsynaptic cell by
binding to and opening transmitter-gated ion channels (Figure 11-36). After the
neurotransmitter has been secreted, it is rapidly removed: it is either destroyed
by specific enzymes in the synaptic cleft or taken up by the presynaptic nerve ter-
minal or by surrounding glial cells. Reuptake is mediated by a variety of Na*-de-
pendent neurotransmitter symporters (see Figure 11-8); in this way, neurotrans-
mitters are recycled, allowing cells to keep up with high rates of release. Rapid
removal ensures both spatial and temporal precision of signaling at a synapse.
It decreases the chances that the neurotransmitter will influence neighboring
cells, and it clears the synaptic cleft before the next pulse of neurotransmitter is
released, so that the timing of repeated, rapid signaling events can be accurately
communicated to the postsynaptic cell. As we shall see, signaling via such chemi-
cal synapses is far more versatile and adaptable than direct electrical coupling via
gap junctions at electrical synapses (discussed in Chapter 19), which are also used
by neurons but to a much smaller extent.

Transmitter-gated ion channels, also called ionotropic receptors, are built
for rapidly converting extracellular chemical signals into electrical signals at

synaptic vesicles

postsynaptic
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nerve cell
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chemical synapses. The channels are concentrated in a specialized region of the
postsynaptic plasma membrane at the synapse and open transiently in response
to the binding of neurotransmitter molecules, thereby producing a brief perme-
ability change in the membrane (see Figure 11-36A). Unlike the voltage-gated
channels responsible for action potentials, transmitter-gated channels are rela-
tively insensitive to the membrane potential and therefore cannot by themselves
produce a self-amplifying excitation. Instead, they produce local permeability
increases, and hence changes of membrane potential, that are graded according
to the amount of neurotransmitter released at the synapse and how long it persists
there. Only if the summation of small depolarizations at this site opens sufficient
numbers of nearby voltage-gated cation channels can an action potential be trig-
gered. This may require the opening of transmitter-gated ion channels at numer-
ous synapses in close proximity on the target nerve cell.

Chemical Synapses Can Be Excitatory or Inhibitory

Transmitter-gated ion channels differ from one another in several important ways.
First, as receptors, they have highly selective binding sites for the neurotransmit-
ter that is released from the presynaptic nerve terminal. Second, as channels, they
are selective in the type of ions that they let pass across the plasma membrane;
this determines the nature of the postsynaptic response. Excitatory neurotrans-
mitters open cation channels, causing an influx of Na*, and in many cases Ca®*,
that depolarizes the postsynaptic membrane toward the threshold potential for
firing an action potential. Inhibitory neurotransmitters, by contrast, open either
CI” channels or K* channels, and this suppresses firing by making it harder for
excitatory neurotransmitters to depolarize the postsynaptic membrane. Many
transmitters can be either excitatory or inhibitory, depending on where they are
released, what receptors they bind to, and the ionic conditions that they encoun-
ter. Acetylcholine, for example, can either excite or inhibit, depending on the type
of acetylcholine receptors it binds to. Usually, however, acetylcholine, glutamate,
and serotonin are used as excitatory transmitters, and y-aminobutyric acid (GABA)
and glycine are used as inhibitory transmitters. Glutamate, for instance, mediates
most of the excitatory signaling in the vertebrate brain.

We have already discussed how the opening of Na* or Ca?* channels depo-
larizes a membrane. The opening of K* channels has the opposite effect because
the K* concentration gradient is in the opposite direction—high concentration
inside the cell, low outside. Opening K* channels tends to keep the cell close to
the equilibrium potential for K*, which, as we discussed earlier, is normally close
to the resting membrane potential because at rest K* channels are the main type
of channel that is open. When additional K* channels open, it becomes harder to
drive the cell away from the resting state. We can understand the effect of open-
ing Cl” channels similarly. The concentration of Cl- is much higher outside the
cell than inside (see Table 11-1, p. 598), but the membrane potential opposes its
influx. In fact, for many neurons, the equilibrium potential for CI" is close to the
resting potential —or even more negative. For this reason, opening Cl- channels
tends to buffer the membrane potential; as the membrane starts to depolarize,
more negatively charged Cl- ions enter the cell and counteract the depolariza-
tion. Thus, the opening of Cl~ channels makes it more difficult to depolarize the
membrane and hence to excite the cell. Some powerful toxins act by blocking the
action of inhibitory neurotransmitters: strychnine, for example, binds to glycine
receptors and prevents their inhibitory action, causing muscle spasms, convul-
sions, and death.

However, not all chemical signaling in the nervous system operates through
these ionotropic ligand-gated ion channels. In fact, most neurotransmitter mol-
ecules that are secreted by nerve terminals, including a large variety of neuro-
peptides, bind to metabotropic receptors, which regulate ion channels only
indirectly through the action of small intracellular signal molecules (discussed
in Chapter 15). All neurotransmitter receptors fall into one or other of these two
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major classes—ionotropic or metabotropic—on the basis of their signaling mech-
anisms:

1. Ionotropic receptors are ion channels and feature at fast chemical syn-
apses. Acetylcholine, glycine, glutamate, and GABA all act on transmit-
ter-gated ion channels, mediating excitatory or inhibitory signaling that is
generally immediate, simple, and brief.

2. Metabotropic receptors are G-protein-coupled receptors (discussed in
Chapter 15) that bind to all other neurotransmitters (and, confusingly, also
acetylcholine, glutamate, and GABA). Signaling mediated by ligand-bind-
ing to metabotropic receptors tends to be far slower and more complex
than that at ionotropic receptors, and longer-lasting in its consequences.

The Acetylcholine Receptors at the Neuromuscular Junction Are
Excitatory Transmitter-Gated Cation Channels

A well-studied example of a transmitter-gated ion channel is the acetylcholine
receptor of skeletal muscle cells. This channel is opened transiently by acetylcho-
line released from the nerve terminal at a neuromuscular junction—the special-
ized chemical synapse between a motor neuron and a skeletal muscle cell (Figure
11-37). This synapse has been intensively investigated because it is readily acces-
sible to electrophysiological study, unlike most of the synapses in the central ner-
vous system, that is, the brain and spinal cord in vertebrates. Moreover, the ace-
tylcholine receptors are densely packed in the muscle cell plasma membrane at
a neuromuscular junction (about 20,000 such receptors per pm?), with relatively
few receptors elsewhere in the same membrane.

The receptors are composed of five transmembrane polypeptides, two of one
kind and three others, encoded by four separate genes (Figure 11-38A). The four
genes are strikingly similar in sequence, implying that they evolved from a single
ancestral gene. The two identical polypeptides in the pentamer each contribute
one acetylcholine-binding site. When two acetylcholine molecules bind to the
pentameric complex, they induce a conformational change that opens the chan-
nel. With ligand bound, the channel still flickers between open and closed states,
but now it has a 90% probability of being open. This state continues—with ace-
tylcholine binding and unbinding—until hydrolysis of the free acetylcholine by
the enzyme acetylcholinesterase lowers its concentration at the neuromuscular
junction sufficiently. Once freed of its bound neurotransmitter, the acetylcholine
receptor reverts to its initial resting state. If the presence of acetylcholine persists
for a prolonged time as a result of excessive nerve stimulation, the channel inac-
tivates. Normally, the acetylcholine is rapidly hydrolyzed and the channel closes
within about 1 millisecond, well before significant desensitization occurs. Desen-
sitization would occur after about 20 milliseconds in the continued presence of
acetylcholine.

The five subunits of the acetylcholine receptor are arranged in a ring, form-
ing a water-filled transmembrane channel that consists of a narrow pore through
the lipid bilayer, which widens into vestibules at both ends. Acetylcholine binding
opens the channel by causing the helices that line the pore to rotate outward, thus
disrupting a ring of hydrophobic amino acids that blocks ion flow in the closed
state. Clusters of negatively charged amino acids at either end of the pore help to
exclude negative ions and encourage any positive ion of diameter less than 0.65
nm to pass through (Figure 11-38B). The normal through-traffic consists chiefly
of Na* and K*, together with some Ca?*. Thus, unlike voltage-gated cation chan-
nels, such as the K* channel discussed earlier, there is little selectivity among cat-
ions, and the relative contributions of the different cations to the current through
the channel depend chiefly on their concentrations and on the electrochemical
driving forces. When the muscle cell membrane is at its resting potential, the net
driving force for K* is near zero, since the voltage gradient nearly balances the K*
concentration gradient across the membrane (see Panel 11-1, p. 616). For Na*,
in contrast, the voltage gradient and the concentration gradient both act in the
same direction to drive the ion into the cell. (The same is true for Ca?*, but the

muscle cell myelinated axon nerve

body of axon terminals L
Schwann cell 10 pm

Figure 11-37 A low-magnification
scanning electron micrograph of a
neuromuscular junction in a frog. The
termination of a single axon on a skeletal
muscle cell is shown. (From J. Desaki and
Y. Uehara, J. Neurocytol. 10:101-110,
1981. With permission from Kluwer
Academic Publishers.)
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extracellular concentration of Ca®* is so much lower than that of Na* that Ca®*
makes only a small contribution to the total inward current.) Therefore, the open-
ing of the acetylcholine-receptor channels leads to a large net influx of Na* (a
peak rate of about 30,000 ions per channel each millisecond). This influx causes a
membrane depolarization that signals the muscle to contract, as discussed below.

Neurons Contain Many Types of Transmitter-Gated Channels

The ion channels that open directly in response to the neurotransmitters acetyl-
choline, serotonin, GABA, and glycine contain subunits that are structurally sim-
ilar and probably form transmembrane pores in the same way as the ionotropic
acetylcholine receptor, even though they have distinct neurotransmitter-binding
specificities and ion selectivities. These channels are all built from homologous
polypeptide subunits, which assemble as a pentamer. Glutamate-gated ion chan-
nels are an exception, in that they are constructed from a distinct family of sub-
units and form tetramers resembling the K* channels discussed earlier (see Figure
11-24A).

For each class of transmitter-gated ion channel, there are alternative forms of
each type of subunit, which may be encoded by distinct genes or else generated
by alternative RNA splicing of a single gene product. The subunits assemble in
different combinations to form an extremely diverse set of distinct channel sub-
types, with different ligand affinities, different channel conductances, different
rates of opening and closing, and different sensitivities to drugs and toxins. Some
vertebrate neurons, for example, have acetylcholine-gated ion channels that dif-
fer from those of muscle cells in that they are formed from two subunits of one
type and three of another; but there are at least nine genes coding for different
versions of the first type of subunit and at least three coding for different versions
of the second. Subsets of such neurons performing different functions in the brain
express different combinations of the genes for these subunits. In principle, and
already to some extent in practice, it is possible to design drugs targeted against
these narrowly defined subsets, thereby specifically influencing particular brain
functions.

Many Psychoactive Drugs Act at Synapses

Transmitter-gated ion channels have for a long time been important drug tar-
gets. A surgeon, for example, can relax muscles for the duration of an operation
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Figure 11-38 A model for the structure
of the skeletal muscle acetylcholine
receptor. (A) Five homologous subunits
(0, o, B, v, 8) combine to form a
transmembrane pore. Both of the a
subunits contribute an acetylcholine-
binding site nestled between adjoining
subunits. (B) The pore is lined by a ring
of five transmembrane a. helices, one
contributed by each subunit (just the

two o subunits are shown). In its closed
conformation, the pore is occluded

by the hydrophobic side chains of five
leucines (green), one from each a helix,
which form a gate near the middle of the
lipid bilayer. When acetylcholine binds to
both a subunits, the channel undergoes
a conformational change that opens

the gate by an outward rotation of the
helices containing the occluding leucines.
Negatively charged side chains (indicated
by the “~* signs) at either end of the pore
ensure that only positively charged ions
pass through the channel. (PDB code:
2BG9.)
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by blocking the acetylcholine receptors on skeletal muscle cells with curare, a
plant-derived drug that was originally used by South American Indians to make
poison arrows. Most drugs used to treat insomnia, anxiety, depression, and
schizophrenia exert their effects at chemical synapses, and many of these act
by binding to transmitter-gated channels. Barbiturates, tranquilizers such as
Valium, and sleeping pills such as Ambien, for example, bind to GABA receptors,
potentiating the inhibitory action of GABA by allowing lower concentrations of
this neurotransmitter to open Cl- channels. Our increasing understanding of the
molecular biology of ion channels should allow us to design a new generation of
psychoactive drugs that will act still more selectively to alleviate the miseries of
mental illness.

In addition to ion channels, many other components of the synaptic signaling
machinery are potential targets for psychoactive drugs. As mentioned earlier, after
release into the synaptic cleft, many neurotransmitters are cleared by reuptake
mechanisms mediated by Na*-driven symports. Inhibiting such transporters pro-
longs the effect of the neurotransmitter, thereby strengthening synaptic transmis-
sion. Many antidepressant drugs, including Prozac, inhibit the reuptake of sero-
tonin; others inhibit the reuptake of both serotonin and norepinephrine.

Ion channels are the basic molecular units from which neuronal devices for
signaling and computation are built. To provide a glimpse of how sophisticated
these devices can be, we consider several examples that demonstrate how the
coordinated activities of groups of ion channels allow you to move, feel, and
remember.

Neuromuscular Transmission Involves the Sequential Activation of
Five Different Sets of lon Channels

The following process, in which a nerve impulse stimulates a muscle cell to con-
tract, illustrates the importance of ion channels to electrically excitable cells. This
apparently simple response requires the sequential activation of at least five dif-
ferent sets of ion channels, all within a few milliseconds (Figure 11-39).

1. The process is initiated when a nerve impulse reaches the nerve terminal
and depolarizes the plasma membrane of the terminal. The depolarization
transiently opens voltage-gated Ca®* channels in this presynaptic mem-
brane. As the Ca?* concentration outside cells is more than 1000 times

RESTING NEUROMUSCULAR JUNCTION ACTIVATED NEUROMUSCULAR JUNCTION

nerve terminal nerve

acetylcholine- impulse

gated cation

acetylcholine
channel

in synaptic
vesicle
Caz+

~ 3
voltage-gated \ 1
Ca®* channels 2
I a

voltage-gated
Na* channel

—

sarcoplasmic Ca®*-release
reticulum channel

Figure 11-39 The system of ion
channels at a neuromuscular junction.
These gated ion channels are essential for
the stimulation of muscle contraction by a
nerve impulse. The various channels are
numbered in the sequence in which they
are activated, as described in the text.
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greater than the free Ca?* concentration inside, Ca?* flows into the nerve
terminal. The increase in Ca®* concentration in the cytosol of the nerve
terminal triggers the local release of acetylcholine by exocytosis into the
synaptic cleft.

2. The released acetylcholine binds to acetylcholine receptors in the muscle
cell plasma membrane, transiently opening the cation channels associated
with them. The resulting influx of Na* causes a local membrane depolariza-
tion.

3. 'The local depolarization opens voltage-gated Na* channels in this mem-
brane, allowing more Na* to enter, which further depolarizes the mem-
brane. This, in turn, opens neighboring voltage-gated Na* channels and
results in a self-propagating depolarization (an action potential) that
spreads to involve the entire plasma membrane (see Figure 11-31).

4. The generalized depolarization of the muscle cell plasma membrane acti-
vates voltage-gated Ca®* channels in the transverse tubules (T tubules—
discussed in Chapter 16) of this membrane.

5. This in turn causes Ca®*-release channels in an adjacent region of the sar-
coplasmic reticulum (SR) membrane to open transiently and release Ca®*
stored in the SR into the cytosol. The T-tubule and SR membranes are
closely apposed with the two types of channel joined together in a special-
ized structure, in which activation of the voltage-sensitive Ca?* channel in
the T-tubule plasma membrane causes a channel conformational change
that is mechanically transmitted to the Ca?*-release channel in the SR
membrane, opening it and allowing Ca?* to flow from the SR lumen into
the cytoplasm (see Figure 16-35). The sudden increase in the cytosolic Ca**
concentration causes the myofibrils in the muscle cell to contract.

Whereas the initiation of muscle contraction by a motor neuron is complex, an
even more sophisticated interplay of ion channels is required for a neuron to inte-
grate a large number of input signals at its synapses and compute an appropriate
output, as we now discuss.

Single Neurons Are Complex Computation Devices

In the central nervous system, a single neuron can receive inputs from thousands
of other neurons, and it can in turn form synapses with many thousands of other
cells. Several thousand nerve terminals, for example, make synapses on an aver-
age motor neuron in the spinal cord, almost completely covering its cell body and
dendrites (Figure 11-40). Some of these synapses transmit signals from the brain
or spinal cord; others bring sensory information from muscles or from the skin.
The motor neuron must combine the information received from all these sources
and react, either by firing action potentials along its axon or by remaining quiet.
Of the many synapses on a neuron, some tend to excite it, while others inhibit
it. Neurotransmitter released at an excitatory synapse causes a small depolariza-
tion in the postsynaptic membrane called an excitatory postsynaptic potential
(excitatory PSP), whereas neurotransmitter released at an inhibitory synapse
generally causes a small hyperpolarization called an inhibitory PSP. The plasma
membrane of the dendrites and cell body of most neurons contains a relatively
low density of voltage-gated Na* channels, and so an individual excitatory PSP is
generally too small to trigger an action potential. Instead, each incoming signal
initiates a local PSP, which decreases with distance from the site of the synapse. If
signals arrive simultaneously at several synapses in the same region of the den-
dritic tree, the total PSP in that neighborhood will be roughly the sum of the indi-
vidual PSPs, with inhibitory PSPs making a negative contribution to the total. The
PSPs from each neighborhood spread passively and converge on the cell body.
Forlong-distance transmission, the combined magnitude of the PSP is then trans-
lated, or encoded, into the frequency of firing of action potentials: the greater the
stimulation (depolarization), the higher the frequency of action potentials.
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Neuronal Computation Requires a Combination of at Least Three
Kinds of K* Channels

The intensity of stimulation that a neuron receives is encoded by that neuron into
action potential frequency for long-distance transmission. The encoding takes
place at a specialized region of the axonal membrane known as the initial seg-
ment, or axon hillock, at the junction of the axon and the cell body (see Figure
11-40). This membrane is rich in voltage-gated Na* channels; but it also contains
at least four other classes of ion channels—three selective for K* and one selec-
tive for Ca?*—all of which contribute to the axon hillock’s encoding function. The
three varieties of K* channels have different properties; we shall refer to them as
delayed, rapidly inactivating, and Ca®*-activated K* channels.

To understand the need for multiple types of channels, consider first what
would happen if the only voltage-gated ion channels present in the nerve cell
were the Na* channels. Below a certain threshold level of synaptic stimulation,
the depolarization of the initial-segment membrane would be insufficient to
trigger an action potential. With gradually increasing stimulation, the threshold
would be crossed, the Na* channels would open, and an action potential would
fire. The action potential would be terminated by inactivation of the Na* channels.
Before another action potential could fire, these channels would have to recover
from their inactivation. But that would require a return of the membrane voltage
to a very negative value, which would not occur as long as the strong depolariz-
ing stimulus (from PSPs) was maintained. An additional channel type is needed,
therefore, to repolarize the membrane after each action potential to prepare the
cell to fire again.

The delayed K* channels perform this task, as discussed previously in rela-
tion to the propagation of the action potential (see Figure 11-31). They are volt-
age-gated, but because of their slower kinetics they open only during the falling
phase of the action potential, when the Na* channels are inactive. Their opening
permits an efflux of K* that drives the membrane back toward the K* equilibrium
potential, which is so negative that the Na* channels rapidly recover from their
inactivated state. Repolarization of the membrane also closes the delayed K*
channels. The initial segment is now reset so that the depolarizing stimulus from

Figure 11-40 A motor neuron in the
spinal cord. (A) Many thousands of nerve
terminals synapse on the cell body and
dendrites. These deliver signals from other
parts of the organism to control the firing of
action potentials along the single axon of
this large cell. (B) Fluorescence micrograph
showing a nerve cell body and its dendrites
stained with a fluorescent antibody that
recognizes a cytoskeletal protein (green)
that is not present in axons. Thousands

of axon terminals (red) from other nerve
cells (not visible) make synapses on the

cell body and dendrites; the terminals are
stained with a fluorescent antibody that
recognizes a protein in synaptic vesicles.
(B, courtesy of Olaf Mundigl and Pietro de
Camilli.)
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synaptic inputs can fire another action potential. In this way, sustained stimula-
tion of the dendrites and cell body leads to repetitive firing of the axon.

Repetitive firing in itself, however, is not enough. The frequency of firing has
to reflect the intensity of stimulation, and a simple system of Na* channels and
delayed K* channels is inadequate for this purpose. Below a certain threshold
level of steady stimulation, the cell will not fire at all; above that threshold level,
it will abruptly begin to fire at a relatively rapid rate. The rapidly inactivating K*
channels solve the problem. These, too, are voltage-gated and open when the
membrane is depolarized, but their specific voltage sensitivity and kinetics of
inactivation are such that they act to reduce the rate of firing at levels of stimula-
tion that are only just above the threshold required for firing. Thus, they remove
the discontinuity in the relationship between the firing rate and the intensity of
stimulation. The result is a firing rate that is proportional to the strength of the
depolarizing stimulus over a very broad range (Figure 11-41).

The process of encoding is usually further modulated by the two other types
ofion channels in the initial segment that were mentioned earlier—voltage-gated
Ca?* channels and Ca?*-activated K* channels. They act together to decrease the
response of the cell to an unchanging, prolonged stimulation—a process called
adaptation. These Ca?* channels are similar to the Ca?* channels that mediate the
release of neurotransmitter from presynaptic axon terminals; they open when an
action potential fires, transiently allowing Ca* into the axon cytosol at the initial
segment.

The Ca%*-activated K* channel opens in response to a raised concentration
of Ca®* at the channel’s cytoplasmic face (Figure 11-42). Prolonged, strong depo-
larizing stimuli will trigger a long train of action potentials, each of which permits
a brief influx of Ca* through the voltage-gated Ca®* channels, so that local cyto-
solic Ca®* concentration gradually builds up to a level high enough to open the
Ca?*-activated K* channels. Because the resulting increased permeability of the
membrane to K* makes the membrane harder to depolarize, the delay between
one action potential and the next is increased. In this way, a neuron that is stim-
ulated continuously for a prolonged period becomes gradually less responsive to
the constant stimulus.

Such adaptation, which can also occur by other mechanisms, allows a neu-
ron—indeed, the nervous system generally—to react sensitively to change, even
against a high background level of steady stimulation. It is one of the computa-
tional strategies that help us, for example, to feel a light touch on the shoulder
and yet ignore the constant pressure of our clothing. We discuss adaptation as a
general feature in cell signaling processes in more detail in Chapter 15.

Other neurons do different computations, reacting to their synaptic inputs in
myriad ways, reflecting the different assortments of ion channels in their mem-
brane. There are several hundred genes that code for ion channels in the human
genome, with over 150 encoding voltage-gated channels alone. Further complex-
ity is introduced by alternative splicing of RNA transcripts and assembling chan-
nel subunits in different combinations. Moreover, ion channels are selectively
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Figure 11-41 The magnitude of the
combined postsynaptic potential (PSP)
is reflected in the frequency of firing of
action potentials. The mix of excitatory
and inhibitory PSPs produces a combined
PSP at the initial segment. A comparison of
(A) and (B) shows how the firing frequency
of an axon increases with an increase in the
combined PSP, while (C) summarizes the
general relationship.
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localized to different sites in the plasma membrane of a neuron. Some K* and
Ca?* channels are concentrated in the dendrites and participate in processing the
input that a neuron receives. As we have seen, other ion channels are located at
the axon’s initial segment, where they control action potential firing; and some
ligand-gated channels are distributed over the cell body and, depending on their
ligand occupancy, modulate the cell’s general sensitivity to synaptic inputs. The
multiplicity of ion channels and their locations evidently allows each of the many
types of neurons to tune the electrical behavior to the particular tasks they per-
form.

One of the crucial properties of the nervous system is its ability to learn and
remember. This property depends in part on the ability of individual synapses to
strengthen or weaken depending on their use—a process called synaptic plas-
ticity. We end this chapter by considering a remarkable type of ion channel that
has a special role in some forms of synaptic plasticity. It is located at many excit-
atory synapses in the central nervous system, where it is gated by both voltage
and the excitatory neurotransmitter glutamate. It is also the site of action of the
psychoactive drug phencyclidine, or angel dust.

Long-Term Potentiation (LTP) in the Mammalian Hippocampus
Depends on Ca2* Entry Through NMDA-Receptor Channels

Practically all animals can learn, but mammals seem to learn exceptionally well
(or so we like to think). In a mammal’s brain, the region called the hippocampus
has a special role in learning. When it is destroyed on both sides of the brain, the
ability to form new memories is largely lost, although previous long-established
memories remain. Some synapses in the hippocampus show a striking form of
synaptic plasticity with repeated use: whereas occasional single action poten-
tials in the presynaptic cells leave no lasting trace, a short burst of repetitive firing
causes long-term potentiation (LTP), such that subsequent single action poten-
tials in the presynaptic cells evoke a greatly enhanced response in the postsynaptic
cells. The effect lasts hours, days, or weeks, according to the number and intensity
of the bursts of repetitive firing. Only the synapses that were activated exhibit LTP;
synapses that have remained quiet on the same postsynaptic cell are not affected.
However, while the cell is receiving a burst of repetitive stimulation via one set of
synapses, if a single action potential is delivered at another synapse on its surface,
that latter synapse also will undergo LTP, even though a single action potential
delivered there at another time would leave no such lasting trace.

The underlying rule in such events seems to be that LTP occurs on any occa-
sion when a presynaptic cell fires (once or more) at a time when the postsynaptic
membrane is strongly depolarized (either through recent repetitive firing of the
same presynaptic cell or by other means). This rule reflects the behavior of a par-
ticular class of ion channels in the postsynaptic membrane. Glutamate is the main
excitatory neurotransmitter in the mammalian central nervous system, and gluta-
mate-gated ion channels are the most common of all transmitter-gated channels
in the brain. In the hippocampus, as elsewhere, most of the depolarizing current
responsible for excitatory PSPs is carried by glutamate-gated ion channels called
AMPA receptors, which operate in the standard way (Figure 11-43). But the cur-
rent has, in addition, a second and more intriguing component, which is mediated
by a separate subclass of glutamate-gated ion channels known as NMDA recep-
tors, so named because they are selectively activated by the artificial glutamate
analog N-methyl-D-aspartate. The NMDA-receptor channels are doubly gated,
opening only when two conditions are satisfied simultaneously: glutamate must
be bound to the receptor, and the membrane must be strongly depolarized. The
second condition is required for releasing the Mg?* that normally blocks the rest-
ing channel. This means that NMDA receptors are normally activated only when
AMPA receptors are activated as well and depolarize the membrane. The NMDA
receptors are critical for LTP. When they are selectively blocked with a specific
inhibitor or inactivated genetically, LTP does not occur, even though ordinary
synaptic transmission continues, indicating the importance of NMDA receptors

pore voltage-gating
domain

Ca®*-gating T
domain K* 5nm

Figure 11-42 Structure of a Ca?*-
activated K* channel. The channel
contains four identical subunits (which
are shown in different colors for clarity).
It is both voltage- and Ca?*-gated. The
structure shown is a composite of the
cytosolic and membrane portions of the
channel that were separately crystallized.
(PDB codes: 2R99, 1LNQ.)
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Figure 11-43 The structure of the

AMPA receptor. This ionotropic glutamate
receptor (named after the glutamate analog
o-Amino 3-hydroxy 5-Methyl 4-isoxazole
Propionic Acid) is the most common
mediator of fast, excitatory synaptic
transmission in the central nervous system
(CNS). (PDB code: 3KG2.)
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How do NMDA receptors mediate LTP? The answer is that these channels,
when open, are highly permeable to Ca?*, which acts as an intracellular signal in
the postsynaptic cell, triggering a cascade of changes that are responsible for LTP.
Thus, LTP is prevented when Ca®* levels are held artificially low in the postsynap-
tic cell by injecting the Ca?* chelator EGTA into it, and LTP can be induced by arti-
ficially raising intracellular Ca®* levels in the cell. Among the long-term changes @ @
that increase the sensitivity of the postsynaptic cell to glutamate is the insertion of
new AMPA receptors into the plasma membrane (Figure 11-44). In some forms
of LTP, changes occur in the presynaptic cell as well, so that it releases more gluta- + .
mate than normal when it is activated subsequently. S - = +
If synapses were capable only of LTP they would quickly become saturated, - -
and thus be of limited value as an information-storage device. In fact, they also
exhibit long-term depression (LTD), with the long-term effect of reducing the
number of AMPA receptors in the post-synaptic membrane. This feat is accom- Figure 11-44 The signaling events in long-
plished by degrading AMPA receptors after their selective endocytosis. Surpris- ~ term potentiation. Atthough not shown,
ingly, LTD also requires NMDA receptor activation and a rise in Ca?*. How does transmffﬁ]on'enhagc"zg f]hang‘fs o ?'S.Cr’]
Ca?* trigger opposite effects at the same synapse? It turns out that this bidirec- E?;U\Zvlhichemp;yesge ?n%fceirﬁi ri;rc;g;z(;
tional control of synaptic strength depends on the magnitude of the rise in Ca?*: signals from the postsynaptic cell.
high Ca?* levels activate protein kinases and LTP, whereas modest Ca* levels acti-
vate protein phosphatases and LTD.
There is evidence that NMDA receptors have an important role in synaptic
plasticity and learning in other parts of the brain, as well as in the hippocampus.
Moreover, they have a crucial role in adjusting the anatomical pattern of synap-
tic connections in the light of experience during the development of the nervous
system.
Thus, neurotransmitters released at synapses, besides relaying transient elec-
trical signals, can also alter concentrations of intracellular mediators that bring
about lasting changes in the efficacy of synaptic transmission. However, it is still
uncertain how these changes endure for weeks, months, or a lifetime in the face
of the normal turnover of cell constituents.

Summary

Ion channels form aqueous pores across the lipid bilayer and allow inorganic ions
of appropriate size and charge to cross the membrane down their electrochemi-
cal gradients at rates about 1000 times greater than those achieved by any known
transporter. The channels are “gated” and usually open transiently in response to
a specific perturbation in the membrane, such as a change in membrane poten-
tial (voltage-gated channels), or the binding of a neurotransmitter to the channel
(transmitter-gated channels).

K*-selective leak channels have an important role in determining the rest-
ing membrane potential across the plasma membrane in most animal cells.
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Voltage-gated cation channels are responsible for the amplification and propaga-
tion of action potentials in electrically excitable cells, such as neurons and skeletal
muscle cells. Transmitter-gated ion channels convert chemical signals to electrical
signals at chemical synapses. Excitatory neurotransmitters, such as acetylcholine
and glutamate, open transmitter-gated cation channels and thereby depolarize the
postsynaptic membrane toward the threshold level for firing an action potential.
Inhibitory neurotransmitters, such as GABA and glycine, open transmitter-gated
Cl” or K* channels and thereby suppress firing by keeping the postsynaptic mem-
brane polarized. A subclass of glutamate-gated ion channels, called NMDA-recep-
tor channels, is highly permeable to Ca®*, which can trigger the long-term changes
in synapse efficacy (synaptic plasticity) such as LTP and LTD that are thought to be
involved in some forms of learning and memory.

Ion channels work together in complex ways to control the behavior of electri-
cally excitable cells. A typical neuron, for example, receives thousands of excitatory
and inhibitory inputs, which combine by spatial and temporal summation to pro-
duce a combined postsynaptic potential (PSP) at the initial segment of its axon. The
magnitude of the PSP is translated into the rate of firing of action potentials by a
mixture of cation channels in the initial segment membrane.

PROBLEMS

Which statements are true? Explain why or why not.

11-1 Transport by transporters can be either active or  B.

WHAT WE DON’'T KNOW

e How do individual neurons establish
and maintain their characteristic
intrinsic firing properties?

e Even organisms with very simple
nervous systems have dozens of
different K* channels. Why is it
important to have so many?

e \Why do cells that are not electrically
active contain voltage-gated ion
channels?

e How are memories stored for so
many years in the human brain?

Does the linked action of these two pumps cause

passive, whereas transport by channels is always passive.

11-2 Transporters saturate at high concentrations of
the transported molecule when all their binding sites are
occupied; channels, on the other hand, do not bind the
ions they transport and thus the flux of ions through a
channel does not saturate.

11-3 The membrane potential arises from movements
of charge that leave ion concentrations practically unaf-
fected, causing only a very slight discrepancy in the num-
ber of positive and negative ions on the two sides of the
membrane.

Discuss the following problems.

11-4  Order Ca?*, CO,, ethanol, glucose, RNA, and H,0
according to their ability to diffuse through a lipid bilayer,
beginning with the one that crosses the bilayer most read-
ily. Explain your order.

11-5 How is it possible for some molecules to be at
equilibrium across a biological membrane and yet not be
at the same concentration on both sides?

11-6 Ion transporters are “linked” together—not physi-
cally, but as a consequence of their actions. For example,
cells can raise their intracellular pH, when it becomes too
acidic, by exchanging external Na* for internal H*, using
a Na*-H* antiporter. The change in internal Na* is then
redressed using the Na*-K* pump.

A. Can these two transporters, operating together,
normalize both the H* and the Na* concentrations inside
the cell?

imbalances in either the K* concentration or the mem-
brane potential? Why or why not?

11-7 Microvilli increase the surface area of intestinal
cells, providing more efficient absorption of nutrients.
Microvilli are shown in profile and cross section in Figure
Q11-1. From the dimensions given in the figure, estimate
the increase in surface area that microvilli provide (for
the portion of the plasma membrane in contact with the
lumen of the gut) relative to the corresponding surface of a
cell with a “flat” plasma membrane.

Figure Q11-1 Microvilli of intestinal epithelial cells in profile and cross
section (Problem 11-7). (Left panel, from Rippel Electron Microscope
Facility, Dartmouth College; right panel, from David Burgess.)

11-8 According to Newton’s laws of motion, an ion
exposed to an electric field in a vacuum would experience
a constant acceleration from the electric driving force, just
as a falling body in a vacuum constantly accelerates due to
gravity. In water, however, an ion moves at constant veloc-
ity in an electric field. Why do you suppose that is?
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Z 21.4 nm

Figure Q11-2 A “pall” tethered by a “chain” to a voltage-gated K*
channel (Problem 11-9).

11-9 In a subset of voltage-gated K* channels, the
N-terminus of each subunit acts like a tethered ball that
occludes the cytoplasmic end of the pore soon after it
opens, thereby inactivating the channel. This “ball-and-
chain” model for the rapid inactivation of voltage-gated
K* channels has been elegantly supported for the shaker
K* channel from Drosophila melanogaster. (The shaker
K* channel in Drosophila is named after a mutant form
that causes excitable behavior—even anesthetized flies
keep twitching.) Deletion of the N-terminal amino acids
from the normal shaker channel gives rise to a channel
that opens in response to membrane depolarization, but
stays open instead of rapidly closing as the normal chan-
nel does. A peptide (MAAVAGLYGLGEDRQHRKKQ) that
corresponds to the deleted N-terminus can inactivate the
open channel at 100 pM.

Is the concentration of free peptide (100 uM) that
isrequired to inactivate the defective K* channel anywhere
near the local concentration of the tethered ball on a nor-
mal channel? Assume that the tethered ball can explore a
hemisphere [volume = (2/3)xnr] with a radius of 21.4 nm,
which is the length of the polypeptide “chain” (Figure
Q11-2). Calculate the concentration for one ball in this
hemisphere. How does that value compare with the con-
centration of free peptide needed to inactivate the chan-
nel?

11-10 The giant axon of the squid (Figure Q11-3) occu-
pies a unique position in the history of our understanding
of cell membrane potentials and nerve action. When an
electrode is stuck into an intact giant axon, the membrane
potential registers -70 mV. When the axon, suspended in a
bath of seawater, is stimulated to conduct a nerve impulse,
the membrane potential changes transiently from -70 mV
to +40 mV.

Figure Q11-3 The squid Loligo (Problem 11-10). This squid is about
15 cmin length.
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lonic composition of seawater and of the
cytosol in the squid giant axon (Problem 11-10).

lon Cytosol Seawater
Na* 65 mM 430 mM
K* 344 mM 9mM

For univalentions and at 20°C (293 K), the Nernst equation
reduces to

V=58mV x log (C,/Cy)

where C, and C; are the concentrations outside and inside,
respectively.

Using this equation, calculate the potential across
the resting membrane (1) assuming that it is due solely to
K* and (2) assuming that it is due solely to Na*. (The Na*
and K* concentrations in the axon cytosol and in seawa-
ter are given in Table Q11-1.) Which calculation is closer
to the measured resting potential? Which calculation is
closer to the measured action potential? Explain why these
assumptions approximate the measured resting and action
potentials.

11-11 Acetylcholine-gated cation channels at the neu-
romuscular junction open in response to acetylcholine
released by the nerve terminal and allow Na* ions to enter
the muscle cell, which causes membrane depolarization
and ultimately leads to muscle contraction.

A. Patch-clamp measurements show that young rat
muscles have cation channels that respond to acetylcho-
line (Figure Q11-4). How many kinds of channel are there?
How can you tell?

B. For each kind of channel, calculate the number of
ions that enter in one millisecond. (One ampere is a cur-
rent of one coulomb per second; one pA equals 10712
ampere. An ion with a single charge such as Na* carries a
charge of 1.6 x 107! coulomb.)

2 pA

40 msec

Figure Q11-4 Patch-clamp measurements of acetylcholine-gated
cation channels in young rat muscle (Problem 11-11).
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